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A Gaussian process derivatives

To better explore the Pareto front based on the surrogate model, in our case Gaussian process (GP),
our Pareto front approximation algorithm (see Section 4.2 of the paper) makes use of the Jacobian
and Hessian of the GP prediction µ(x),Σ(x) w.r.t. the input x:
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where k = k(x, X), K = k(X,X), ∂m
∂x = 0 and ∂m

∂2x = 0 since we use m(x) = 0.

In this paper we use Matern 5/2 kernel [16] as default, defined as:
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where σf ∈ R is a scaling parameter and σn ∈ R is a constant parameter, d denotes Euclidean
distance d(x/l,X/l), and l ∈ Rd is the length-scale parameter of the kernel. The derivation of ∂k
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We omit the derivation for derivatives of Euclidean distance d since it is well known. Extending the
derivation to other kernels such as Matern 1/2, Matern 3/2 and RBF [16] kernels is straightforward.

B Experimental setup details

Our algorithm does not rely on any specific computing infrastructure. For hardware, a modern CPU
will suffice for running the experiments. See more details about the recommended software setup in
the README of our code.
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B.1 Problem description

In this section, we briefly introduce the properties of each problem, including the dimensions of
the design space X ⊂ Rd and performance space f(X ) ⊂ Rm, and the reference points we use for
calculating the hypervolume indicator. The problem descriptions for 13 synthetic functions and 7
real-world problems are shown in Table 1 and Table 2 respectively. For all functions that can work
with arbitrary dimensions, we use 6 variables and 2 objectives for consistency in testing. We perform
10 independent test runs with 10 different random seeds for each problem on each algorithm. For
each test run of one problem, we use the same initial set of samples for every algorithm, which is
generated by Latin hypercube sampling [13] using a same random seed. To have a fair comparison,
we simply set the reference point r ∈ Rm as a vector containing the maximum value of each objective
over the initial set of samples {x1, ...,xk}:

r = ( max
1≤i≤k

f1(xi), ..., max
1≤i≤k

fm(xi)).

Table 1: Description of synthetic functions.

Name d m r

ZDT1 6 2 (0.9902, 6.3936)
ZDT2 6 2 (0.9902, 7.7158)
ZDT3 6 2 (0.9902, 6.5464)
DTLZ1 6 2 (360.7570, 343.4563)
DTLZ2 6 2 (1.7435, 1,6819)
DTLZ3 6 2 (706.5260, 746.2411)
DTLZ4 6 2 (1.8111, 0.7776)
DTLZ5 6 2 (1.7435, 1.6819)
DTLZ6 6 2 (5.7482, 5.6523)
OKA1 2 2 (7.4051, 4.3608)
OKA2 3 2 (3.1315, 4.6327)
VLMOP2 6 2 (1.0, 1.0)
VLMOP3 2 3 (8.1956, 53.2348, 0.1963)

Table 2: Description of real-world problems.

Name Description d m r

RE1 Four bar truss design [3] 4 2 (2967.0243, 0.0383)
RE2 Reinforced concrete beam design [1] 3 2 (703.6860, 899.2291)
RE3 Hatch cover design [1] 2 2 (5885.4870, 5.5063)
RE4 Welded beam design [17] 4 3 (202.8569, 42.0653, 2111643.6209)
RE5 Disc brake design [17] 4 3 (6.1356, 6.3421, 12.9737)
RE6 Gear train design [8] 4 3 (6.6764, 59.0, 0.4633)
RE7 Rocket injector design [9] 4 3 (0.8136, 0.8889, 0.9799)

B.2 Hyperparameters

For fair comparison among different algorithms, we try to use the same set of common hyperpa-
rameters as much as possible. The common hyperparameters are presented in Appendix B.2.1 and
the algorithm-specific hyperparameters are presented in Appendix B.2.2. Here we list the important
hyperparameters used in the implementation, and more details could be found in the code.

B.2.1 General hyperparameters

Surrogate model We use the same Gaussian process model as a surrogate for all experiments. We
use zero mean function and anisotropic Matern 5/2 kernel. The corresponding hyperparameters are
specified in Table 3, which are suggested by TSEMO.
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Table 3: GP hyperparameters.

parameter name value

initial l (1, ..., 1) ∈ Rd

l range (
√
10−3,

√
103)

initial σf 1

σf range (
√
10−3,

√
103)

initial σn 10−2

σn range (e−6, 1)

Multi-objective evolutionary algorithm MOEA/D-EGO, TSEMO, USeMO-EI share the same
NSGA-II solver using simulated binary crossover [5] and polynomial mutation [6] for finding the
Pareto front of acquisition functions. The initial population is obtained from the best current samples
determined by non-dominated sort [7]. The other hyperparameters are specified in Table 4.

Table 4: NSGA-II hyperparameters.

parameter name value

population size 100
number of generations 200
crossover ηc 15
mutation ηm 20

We also use the baseline algorithm NSGA-II to compare with other MOBO algorithms. For that,
we use the same hyperparameters for crossover ηc and mutation ηm as stated in Table 4, but the
population size is set to the batch size and the number of generations is equivalent to the number of
algorithm iterations.

B.2.2 Algorithm-specific hyperparameters

ParEGO Since ParEGO is a single-point MOBO method, we extend it to the batch setting by
using b random scalarization weights in each iteration, where b is the batch size. We use Chebyshev
scalarization [14] and CMA-ES algorithm [10] for solving the scalarized single-objective problem
with σ = 0.5 as initial standard deviation.

MOEA/D-EGO We use a similar implementation as the original MOEA/D-EGO, except that
we remove the FuzzyCM. Nowadays it is already computationally efficient to train the Gaussian
process model and directly use it for prediction, rather than relying on relatively faster but less
accurate approximation methods. Hence, the performance of our implementation could potentially
be relatively higher than the original implementation thanks to the accuracy gain of removing the
FuzzyCM. We use simulated binary crossover and polynomial mutation for MOEA/D, and the other
hyperparameters used are described in Table 5.

Table 5: MOEA/D hyperparameters.

parameter name value

number of reference directions 100
number of generations 200
number of neighbors 20
neighbor mating probability 0.9
crossover ηc 20
mutation ηm 20

TSEMO For TSEMO, we use mostly the same set of hyperparameters used in its original imple-
mentation. For spectral sampling we use 100 points.
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USeMO-EI Since USeMO-EI is a single-point MOBO method, we extend it to the batch setting by
selecting top-b points with maximal uncertainty, where b is the batch size.

DGEMO Most of the distinct hyperparameters of DGEMO come from the multi-objective opti-
mization algorithm [18], as presented in Table 6. In this MOO algorithm, the initial population is
also obtained from the best current samples determined by non-dominated sort. Generally DGEMO
is robust to the hyperparameter choices and in practice mildly changing the values of these hyperpa-
rameters wouldn’t affect the final performance of DGEMO too much. For potentially slightly better
performance, the number of buffer cells and the number of grid samples on local manifold could be
increased for obtaining more candidate solutions to select, at the cost of spending more computation
time. The label cost for graph cut is a key hyperparameter that controls the number of diversity
regions, which could be adjusted case by case. Higher cost leads to less diversity regions. Even
though we use the same label cost across all the benchmark problems, which is obviously sub-optimal,
DGEMO still outperforms other baseline algorithms. More suggestions on hyperparameter choices
could be found in the original paper of this algorithm[18].

Table 6: DGEMO hyperparameters.

parameter name value

number of buffer cells 100 for 2-dim, 1000 for higher-dim
max number of samples in each cell 10
buffer origin (0, ..., 0) ∈ Rm

δb 0.2
δp 10
δs 0.3
label cost for graph cut 10
number of grid samples on local manifold 100

C Computational complexity

C.1 DEGMO algorithm complexity

Since our implementation is based on several advanced open-source Python packages doing the
mathematical calculation (such as NumPy [15] and SciPy [20]) and highly memory-efficient, there
is very a small memory occupation when running DGEMO algorithm. Here we mainly analyze the
time complexity of our algorithm from three stages.

Surrogate model fitting It is well known that Gaussian process fitting is ofO(N3) time complexity,
where N is the size of the current dataset. However, in our case, N is usually not a big number (up to
several hundred) since we are focusing on a problem setting with relatively few data available, and
that is the common scenario in applications of Bayesian optimization.

Multi-objective optimization In the algorithm of [18], at each generation, for each individual
in the population, the computationally expensive operations are the following four components:
applying L-BFGS [12] for local optimization, SLSQP [11] for solving KKT dual variables, computing
exploration directions by taking the null space of a matrix (see Equation 3 of [18]), and GP prediction
on neighboring grid samples. Specifically, L-BFGS operates at O(Md) time complexity, where M is
a relatively small number of algorithm updates and d is the dimension of design variables; SLSQP has
O(d3) time complexity; computing the null space is roughly within O(d3) time; for GP prediction
our algorithm only cares about the mean value without the standard deviation, hence it takes O(Nn)
time to complete, where n is the number of grid samples. After all generations are calculated, the
graph-cuts [2] is performed to reach a continuous Pareto front representation. Representing the
number of generation and population sizes as Ngen and Npop respectively, the graph-cuts algorithm
has O(NgenNpop) time complexity if we consider the number of algorithm iterations as a small
constant, where NgenNpop equals the maximum number of labels in the graph. As a result, the
overall time complexity in this stage is roughly O(NgenNpop(d3 +Nn)).
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Table 7: Algorithm runtime comparison (seconds per iteration).

Problem NSGA-II ParEGO MOEA/D-EGO TSEMO USeMO-EI DGEMO (Ours)

ZDT1 0.01 16.39 25.39 1.90 1.82 5.51
ZDT2 0.01 13.34 25.09 1.89 1.80 5.24
ZDT3 0.01 15.40 25.24 1.73 1.84 5.45
DTLZ1 0.01 11.94 25.39 1.82 2.26 6.53
DTLZ2 0.01 14.05 25.14 1.50 1.78 4.76
DTLZ3 0.01 11.85 25.34 1.48 1.88 6.84
DTLZ4 0.01 13.76 25.46 1.65 1.93 7.33
DTLZ5 0.01 13.79 25.37 1.51 1.78 4.72
DTLZ6 0.01 10.57 24.75 1.62 1.56 5.69
OKA1 0.01 6.10 24.35 1.52 1.50 4.97
OKA2 0.01 9.28 24.59 1.52 1.60 5.78
VLMOP2 0.01 9.08 25.07 1.47 1.78 5.11
VLMOP3 0.01 7.10 29.24 2.18 1.90 6.38
RE1 0.01 14.37 24.85 1.99 1.66 4.60
RE2 0.01 7.03 24.66 1.61 1.65 4.44
RE3 0.01 7.90 24.56 1.65 1.65 4.77
RE4 0.01 12.60 28.79 2.02 2.25 8.12
RE5 0.01 17.92 28.91 2.89 1.99 7.00
RE6 0.01 6.74 28.89 1.81 1.95 7.03
RE7 0.01 17.91 28.86 4.82 1.98 6.66

Batch selection algorithm Given the batch size b, the maximum performance buffer capacity D
(a number of cells times a maximum number of samples in each cell), the number of points on the
current Pareto front Npf , and the number of objectives m, our batch selection algorithm has time
complexity O(bDNpf ) for m = 2, O(bDNpf logNpf ) for m = 3, and O(bDN

b(m−1)/2c+1
pf ) for

m > 3 due to the algorithm complexity difference for hypervolume calculation w.r.t. m.

C.2 Algorithm runtime comparison

To empirically investigate the efficiency of different algorithms, we record the runtime statistics
in seconds as shown in Table 7. This comparison is done with batch size as 10 and 20 algorithm
iterations, and the statistics are averaged across 6 different random seeds and all the iterations. Note
that this comparison is highly implementation-dependent and is done by using our codebase. We
run this comparison on an Intel Xeon(R) W-2195 CPU @ 2.30GHz * 36 processor. For ParEGO
and DGEMO they can be easily parallelized, hence we record the runtime of experiments using 36
parallel processes. For NSGA-II, MOEA/D-EGO, TSEMO, and USeMO-EI, the serial runtime is
recorded. From this table, we can see that NSGA-II is the most time-efficient algorithm since it
operates simply without Bayesian optimization. For all the problems we test they have an analytical
form of evaluation function thus the evaluation could be done extremely fast. However, in practice,
many real-world problems require physical experiments for evaluation which could often take hours
to days to finish. Hence for these real-world problems, the runtime cost of the algorithm would be
negligible (commonly less than the 30s per iteration).

D Other comparison metrics

In this section, we compare the performance of DGEMO and other baseline algorithms using
generational distance (GD) [19] (Figure 1) and inverted generational distance (IGD) [4] (Figure 2) as
metrics, which are also very popular metrics in MOO literature besides hypervolume. These metrics
measure the Euclidean distance between the Pareto front approximation found by the algorithm and
the true Pareto front in different ways, thus the lower the better. But since most our benchmark
problems do not have an analytical solution of the true Pareto front, in practice we approximate the
true Pareto front by merging all the Pareto front approximations found by all algorithms using all
random seeds. The results show that DGEMO performs the best across almost all the benchmark
problems under either comparison metric.
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Figure 1: Generational distance of different algorithms on all problems with batch size as 10, shown
with respect to the different number of function evaluations.

E Ablation studies

E.1 Batch size

We conduct experiments using different batch sizes, including 1 (Figure 3), 2 (Figure 4), 4 (Figure 5),
5 (Figure 6), and 20 (Figure 7). The result shows our DGEMO still consistently outperforms other
algorithms and has a robust performance over a wide range of batch size.
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Figure 2: Inverted generational distance of different algorithms on all problems with batch size as 10,
shown with respect to the different number of function evaluations.
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Figure 3: Hypervolume indicator of different algorithms on all problems with batch size as 1, shown
with respect to the different number of function evaluations.
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Figure 4: Hypervolume indicator of different algorithms on all problems with batch size as 2, shown
with respect to the different number of function evaluations.
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Figure 5: Hypervolume indicator of different algorithms on all problems with batch size as 4, shown
with respect to the different number of function evaluations.
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Figure 6: Hypervolume indicator of different algorithms on all problems with batch size as 5, shown
with respect to the different number of function evaluations.
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Figure 7: Hypervolume indicator of different algorithms on all problems with batch size as 20, shown
with respect to the different number of function evaluations.

12



E.2 Pareto front approximation

To investigate whether the piecewise continuous Pareto front approximation obtained from Section
4.2 of the main paper helps improve the performance, we do another set of ablation experiments.
We remove the last part of the Pareto front approximation algorithm with KKT conditions, and only
get the solutions obtained after the local optimization step (see Section 4.2 of main paper). From
these solutions we select the batch of samples to evaluate according to the maximal hypervolume
improvement criterion, without the diversity metric. The comparison result is shown in Figure 8,
which demonstrates that DGEMO highly benefits from the continuous Pareto front approximation, as
denser candidate solutions are provided and the diversity information becomes available from this
representation.
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Figure 8: Hypervolume indicator of DGEMO and its version without continuous Pareto front
approximation on all problems with batch size as 10, shown with respect to a different number
of function evaluations. Note that the version without the continuous Pareto front approximation
does not have the diversity metric incorporated in the selection strategy, but only uses the maximal
hypervolume improvement information.
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F Pareto set analysis

For many complex real-world design problems, there are obvious clusters in the Pareto-optimal
solutions. It is therefore desirable to fully explore these diverse regions of interest for a more
comprehensive understanding of the problem and having a wider range of solutions.

We take the rocket injector design problem (RE7) 2 as an example. In this problem, the primary
objectives are performance and material sustainability. Specifically, the goal is to minimize the
combustion length (Xcc) for better size and efficiency of the combustor, while at the same time
minimizing the maximum temperature of injector face (TFmax) and post tip (TTmax) for a longer
material life. The design variables consist of hydrogen flow angle (α), hydrogen area (4HA), oxygen
area (4OA), and oxidizer post tip thickness (OPTT).

The Pareto-optimal solutions of this problem are grouped in several regions in design space, and
these groups correspond to different patches on the Pareto front, see [9]. This phenomenon shows
that for the rocket injector structure, there is no single optimal solution that guarantees the optimal
performance on all the objectives involved. Instead, there are different design patterns that lead to
optimal properties with different trade-offs. To understand the deeper connection between design
space and performance space, how certain design variables lead to Pareto optimality, and the pattern
difference between these groups, we explore diversity regions detected by our algorithm. Figure 9
presents a visualization of the 3-dimensional perofrmance space, where each diversity region is
represented with a different color.

From Figure 9 we can see different clusters are indeed responsible for different Pareto-optimal regions
on the Pareto front. By analyzing the design variables of the Pareto set, we list several interesting
observations illustrated as follows:

• The widest blue region of the Pareto front includes solutions with the highest TTmax. This
region is the only region with Pareto-optimal points that have the OPTT > 0, and these
points are located in the upper part of the blue region. We note that larger OPTT design
variable leads to larger TTmax. Hence, the oxidizer thickness has the most important
contribution to the longer material life of the post tip and solely contributes to this objective.
In addition, an important design characteristic of this region is that the oxygen area is
always 0, while the other two design variables (hydrogen flow angle and hydrogen area)
vary between 0 and 1. Varying the values of α and 4HA, controls the trade-off between
Xcc and TFmax.

• When hydrogen flow angle and oxygen area are maximally utilized (α = 1 and4OA = 1),
TTmax has the minimal optimal value (gray region). By ranging the value of4HA from 0.1
to 1, Xcc increases while TFmax decreases, respectively. Hence hydrogen area controls the
trade-off between the TFmax and Xcc, similar to the pattern we found in blue region.

• When the hydrogen area is maximal (4HA = 1), oxygen area is very high (4OA > 0.9),
oxydizer post tip is not in use (OPTT = 0), and the hydrogen flow angle ranges from 0.5
to 1, the changes in TFmax are negligible, while TTmax decreases from 0.1 to -0.3 as α
increases (purple region). For applications targeting a design with minimal face temperature,
we found the design variables should have maximal hydrogen area and oxygen area, at the
same time with minimal hydrogen flow angle and zero OPTT, as shown in the green region.

• In general, among the Pareto-optimal solutions, a small flow angle indicates low face
temperature and high tip temperature. Increasing the flow angle leads to an increase in the
face temperature and a decrease in the combustion length. Large hydrogen area corresponds
to low tip and face temperature but long combustion length. Most of the Pareto-optimal
solutions have a relatively low tip thickness.

As a result, by analyzing the regions of on the Pareto set we can gain more understanding about the
nature of the problem. In many complex real-world problems, such as this rocket injector design, the
Pareto-optimal solutions are grouped in different regions and present different performance trade-offs.
The DGEMO algorithm can discover these diverse sets of solutions by directly taking the diversity in

2The original rocket injector design problem [9] has four objectives defined. However, according to their
analysis, two of them have strong correlation, hence we simplify it as a three objective problem as also suggested
in [9].
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Figure 9: Performance space visualization of Pareto-optimal solutions and their diversity regions
found by DGEMO on rocket injector design (RE7) problem (in 3D visualization, the opacity of points
represent the depth from current point of view).

both design space and performance space into account. From the solutions found by our algorithm, we
can easily extract the representative design patterns from these regions of Pareto-optimal designs, and
potentially combine the knowledge concluded from these patterns with prior knowledge to discover
an even better Pareto set.
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Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 2020.

16


	Gaussian process derivatives
	Experimental setup details
	Problem description
	Hyperparameters
	General hyperparameters
	Algorithm-specific hyperparameters


	Computational complexity
	DEGMO algorithm complexity
	Algorithm runtime comparison

	Other comparison metrics
	Ablation studies
	Batch size
	Pareto front approximation

	Pareto set analysis

