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Learning the signatures of the human grasp using a 
scalable tactile glove
Subramanian Sundaram1,2,3,4*, Petr Kellnhofer1,2, Yunzhu Li1,2, Jun-Yan Zhu1,2, Antonio Torralba1,2 & Wojciech Matusik1,2

Humans can feel, weigh and grasp diverse objects, and 
simultaneously infer their material properties while applying the 
right amount of force—a challenging set of tasks for a modern 
robot1. Mechanoreceptor networks that provide sensory feedback 
and enable the dexterity of the human grasp2 remain difficult to 
replicate in robots. Whereas computer-vision-based robot grasping 
strategies3–5 have progressed substantially with the abundance 
of visual data and emerging machine-learning tools, there are as 
yet no equivalent sensing platforms and large-scale datasets with 
which to probe the use of the tactile information that humans rely 
on when grasping objects. Studying the mechanics of how humans 
grasp objects will complement vision-based robotic object handling. 
Importantly, the inability to record and analyse tactile signals 
currently limits our understanding of the role of tactile information 
in the human grasp itself—for example, how tactile maps are used 
to identify objects and infer their properties is unknown6. Here we 
use a scalable tactile glove and deep convolutional neural networks 
to show that sensors uniformly distributed over the hand can be 
used to identify individual objects, estimate their weight and explore 
the typical tactile patterns that emerge while grasping objects. The 
sensor array (548 sensors) is assembled on a knitted glove, and 
consists of a piezoresistive film connected by a network of conductive 
thread electrodes that are passively probed. Using a low-cost (about 
US$10) scalable tactile glove sensor array, we record a large-scale 
tactile dataset with 135,000 frames, each covering the full hand, 
while interacting with 26 different objects. This set of interactions 
with different objects reveals the key correspondences between 
different regions of a human hand while it is manipulating objects. 
Insights from the tactile signatures of the human grasp—through 
the lens of an artificial analogue of the natural mechanoreceptor 
network—can thus aid the future design of prosthetics7, robot 
grasping tools and human–robot interactions1,8–10.

Humans effortlessly manipulate objects and tools by applying pre-
cisely controlled forces11–13. To understand the tactile feedback involved 
in the human grasp, we can use emerging machine learning tools to 
attempt to distil high-level properties and relationships from high- 
dimensional tactile data. Such tools require large-scale tactile datasets 
with high spatial resolution. However, large tactile datasets of human 
grasps covering the full hand do not exist because densely covering 
the human hand with tactile sensors is challenging. These tactile sen-
sors come with strict requirements for the form-factor, resolution and 
mechanical compliance. Whereas electronic skins have made pro-
gress on the compliance requirements14, an electronic tactile glove 
with dense coverage and capable of collecting large datasets has yet 
to be demonstrated. The Tekscan Grip system (with its 349 sensors) 
is the closest high-cost commercially available system, but does not 
fully cover the hand (details and a comparative list are included in 
the Supplementary Information). Current high-resolution optical tac-
tile sensors15,16 and biomimetic multimodal sensor integrations17,18 
have not successfully mapped a full human hand. Broadly, hurdles in 
creating a scalable tactile feedback network and acquiring large tactile 

datasets covering the hand have impeded our fundamental understand-
ing of the human grasp.

We first present a simple method of fabricating a low-cost, scalable 
tactile glove (STAG) covering the full hand with 548 sensors. The STAG 
can record tactile videos (with frame rate approximately 7.3 Hz), meas-
uring normal forces in the range 30 mN to 0.5 N (with quantization 
of about 150 levels and a peak hysteresis of about 17.5%). Importantly, 
the device can be constructed with low-cost materials (around US$10) 
and be used over long intervals. The STAG can be translated to a variety 
of different designs (see below). We introduce a large-scale dataset of 
tactile maps (135,000 frames) recorded using the STAG while manip-
ulating objects with a single hand; see Methods for dataset acquisition 
conditions. The spatial correlations and correspondence between finger 
regions that emerge from the dataset represent the tactile signatures of 
the human grasping strategy (Fig. 1a). Here we observe and learn from 
successful daily human–object interactions with the long-term goal of 
aiding the development of robots and prosthetics.

The similarities in the underlying shape perception primitives 
between the visual and tactile domains are known19. We therefore 
hypothesized, on the basis of visual perception studies (showing that 
16 × 16 pixels were sufficient for face recognition20 and 32 × 32 pixels 
for scene recognition21 in visual data), that a similar minimal sensor 
count is suitable for a tactile sensor. The STAG consists of a sens-
ing sleeve with 548 sensors attached on top of a custom knit glove. 
Figure 1b shows the locations of the 548 sensors and the 64 electrodes 
(fabrication details are included in the Methods). Fabricated gloves 
are shown in Fig. 1a and Extended Data Fig. 1a (see Extended Data 
Fig. 1b for a high-resolution scan of the glove). The sensor array con-
sists of a force-sensitive film (0.1 mm thick) addressed by a network of 
orthogonal conductive threads (0.34 mm) on each side, insulated by a 
thin adhesive (0.13 mm) and a low-density polyethylene (LDPE) film 
(about 13 μm). Each point of overlap between the orthogonal elec-
trodes is sensitive to normal force, modulating the electrical resistance 
through the force-sensitive film. The force-sensitive film is laser-cut 
to fit the custom knit glove (yellow) along with holes to guide thread 
placement, and slots at the finger joints. The sensor laminate is thin and 
mechanically flexible (three-point bending test results are shown in 
Supplementary Fig. 1; Supplementary Video 1 demonstrates the com-
pliance visually). The typical force response of a single sensing element 
(Fig. 1c), measured as the through-film resistance, changes from about 
4 kΩ (unloaded) to below 2 kΩ (at a 0.5 N normal load). Each sensing 
element is sensitive to small forces (starting at about 25 mN; Extended 
Data Fig. 2a) and saturates beyond 0.8 N. The force response in the 
working range (30 mN to 0.5 N) is consistent across multiple devices 
(Extended Data Fig. 2b) and over multiple cycles (1,000 cycle tests in 
Extended Data Fig. 2c, d). The sensor elements show a stable resistance 
up to 60 °C and become insulating at temperatures above 80 °C (differ-
ential scanning calorimetry and resistance measurements are shown in 
Extended Data Fig. 2e, f).

We use a modified version of a grounding-based electrical isolation 
scheme22 (including charging resistors to improve the readout speed) 
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to extract individual sensor measurements (the readout circuit costs 
about US$100; see Methods for fabrication details). The circuit topology 
is shown in Extended Data Fig. 1c along with the fabricated printed 
circuit-board image (Extended Data Fig. 1d). The sensor response at 
the output of the amplifier (and the analog-to-digital converter, ADC) is 
linear with respect to the force (see Supplementary Fig. 2). We note that 
the STAG design can be simplified to rapidly fabricate regular arrays; 
Extended Data Fig. 3 shows 1,024-element sensors with sensor spacing 
of 2.5 mm. Such regular arrays fixed on flat surfaces can record the rest-
ing identities of different objects (Extended Data Fig. 4). Furthermore, 
despite the weak extensibility of the force-sensitive film, we can enhance 
the achievable stretchability by incorporating auxetic designs23 into the 
sensor structure as shown in Extended Data Fig. 5. The auxetic prototype 
with 10 × 10 elements can be stretched in multiple directions, as well as 
folded or crushed (Extended Data Fig. 5e, f; see Supplementary Video 2).

The reliability of our STAG prototype allows us to record tactile vid-
eos (and corresponding visual images for illustration) during inter-
actions with a set of 26 objects (Extended Data Fig. 6) with a single 
hand over many hours (total length of recordings exceeding 5 hours; 
see Methods for dataset acquisition details). A sample set of interac-
tions from our dataset are shown in Supplementary Videos 3–5. We 
identify the specific frames in which objects are in contact with the 
glove (see Methods for filtering procedure). We train a convolutional 
neural network (CNN) to identify objects using these filtered frames 
(32 × 32 arrays in sensor coordinates). We use a ResNet-18-based 
architecture24 that takes N input frames (Fig. 2a; see network imple-
mentation in the Methods). The classification accuracy improves with 
the number of inputs and reaches its maximal performance with about 
seven random input frames (Fig. 2b). This is expected, because multiple 
contacts with an object help to identify it more accurately. Figure 2c 
shows eight example tactile frames along with their output classifi-
cation vectors (the expanded version is shown in Supplementary Fig. 
3). Here we observe that it is easy to identify the mug when it is held 
by the handle but it can be confused with a can or other objects when 
lifted from the sides. Likewise, the elongated shape of the pen is easier 
to identify when it is in contact with the palm than when it is held 
between fingers. Interestingly, when a mug is held by the handle (or 
while a spray can is being held), the distinct hand pose captured in the 
tactile map from sensors around the joints (proprioceptive data) may 
also help in object classification.

The first 3 × 3 convolution filters learned by our network are shown 
in Extended Data Fig. 7i. To understand the features at a higher resolu-
tion, we scaled the input resolution by three and adapted the network 
elements appropriately (see Methods). The first layer convolution fil-
ters learned by the adapted network are shown in Fig. 2d. The net-
work primarily learns blob-like point detectors, edge detectors and 
low-frequency filters. The visual domain filters learned by standard 
ResNet-18 trained on the ImageNet25 dataset are shown in Extended 
Data Fig. 7j for comparison. Furthermore, we visualized the features 
of our trained network (with Network Dissection; see Methods for 
details) and observed that the early convolution layers are activated in 
small regions. The higher-layer convolution filters are often activated 
by more complex grasp-related concepts; Supplementary Fig. 4b shows 
the activation maps of filters that respond to larger contact patterns, or 
when specific hand regions are used.

Humans are easily capable of associating similar grasps based on 
motor movements, and the identification of an object is probably better 
performed when choosing the most distinct (informative) set of grasps. 
Motivated by this, instead of choosing N random frames, we identified 
the most diverse set of N frames for an input recording by k-means 
clustering (an example with N = 5 clusters is shown in Fig. 2e; see an 
interactive version of the map in Supplementary Data 1). The classi-
fication accuracy using N input frames (one from each cluster) shows 
that clustering provides a marginal improvement in accuracy when a 
small set of inputs is used (N < 4 in Fig. 2b). We note that the results 
of clustering-based inputs converge with those of randomly chosen 
inputs for large N because a random selection captures the data well 
when N is large. The corresponding confusion matrices are shown in 
Extended Data Fig. 7a–h. We observe that objects with similar shapes, 
sizes or weights are more likely to be confused with one another. Light 
objects such as the safety glasses, the plastic spoon or the coin are more 
easily misclassified, whereas large, heavy objects with distinct signa-
tures, like the tea box, can easily be detected even with a small number 
of input frames.

The object identification tests described above help to evaluate the 
capability of the STAG in capturing useful data. We also evaluated the 
classification performance of lower sensor counts by downsampling the 
tactile data either uniformly or based on different regions of the hand. 
The classification accuracy drops considerably as the effective number 
of sensors is reduced, thereby highlighting the need for a high sensor 
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Fig. 1 | The STAG as a platform to learn from the human grasp. a, The 
STAG consists of a sensor array with 548 elements covering the entire 
hand, attached to a custom knit glove. An electrical readout circuit is used 
to acquire the normal force recorded by each sensor at approximately 
7.3 fps. Using this setup allows us to record a dataset of 135,187 tactile 
maps while interacting with 26 different objects. A deep convolutional 
neural network trained purely on tactile information can be used to 
identify or weigh objects and explore the tactile signatures of the human 
grasp. The glove shown at the centre is a rendering. b, The design of the 

STAG architecture shows the individual locations of the 548 sensors, along 
with the interconnects, slot and 64 electrodes. The piezoresistive sensor 
array is fabricated by laminating simple materials and can be extended to 
different architectures easily (Extended Data Figs. 3 and 5). c, Each sensor 
element responds to normal force by exhibiting a change in the through-
film resistance. The sensor characteristics are repeatable across multiple 
devices and reliable over the long term (Extended Data Fig. 2). The inset 
shows the same characteristics in a logarithmic force scale (axes labels are 
as for the main plot).
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Fig. 2 | Identifying and weighing objects from tactile information. a, The 
CNN architecture used for identifying objects from tactile information takes 
as input N arrays of tactile data (32 × 32 arrays). Rectified Linear Units (ReLU) 
are used to introduce non-linearity into the model. ‘Dropout’ is a regularization 
technique that randomly drops out nodes of the network to reduce overfitting 
to the training data. ‘Max pooling’ is used to reduce dimensionality of the data 
by passing only the locally highest activations. b, The object identification 
accuracy is enhanced when using a diverse set of tactile maps from N distinct 
clusters as input when compared to a random choice of inputs; results are 
averaged over ten training runs (mean ± s.d.). Here each distinct cluster (as 
shown in e) is a group of similar grasps. c, A representative set of examples 
during single-hand manipulation of objects. Tactile maps, corresponding visual 

images and the classification vectors (bottom) from single tactile map inputs 
are shown—the ground-truth object labels are marked in black (see expanded 
version in Supplementary Fig. 3). d, The convolution filters learned by the 
scaled version of the network are shown (see Methods). Note that the inputs 
and the network are scaled to visualize the filters at a higher resolution. The 
original 3 × 3 convolution filters of the network in a and the original ImageNet-
trained ResNet filters are shown in Extended Data Fig. 7i, j respectively.  
e, Clustering tactile maps from a single object interaction helps to identify a 
diverse set of tactile maps that correspond to that object. Five different clusters 
are used to extract five tactile inputs (N) shown in red (see interactive map 
in Supplementary Data 1). f, ‘Leave-one-out’-based CNN weight prediction 
results compared with a linear model (mean ± 95% confidence interval).
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count (classification performance and the effective receptive fields are 
shown in Supplementary Fig. 5).

In addition to identifying objects, humans can easily estimate the 
weight of objects from tactile signals. The ability to estimate weights is 
of practical use in robotics and has been the focus of human perception 
experiments26. To estimate the weights of objects from tactile interac-
tions, we used a restricted dataset of multi-fingered grasps where the 
object was picked up from above (sample recording in Supplementary 
Video 6). After an object is picked up, a single frame is used as an input 
to a CNN to predict its weight. Note that the training and test data have 
disjoint sets of objects (see Methods). Extended Data Figure 8 shows a 
representative set of tactile frames and corresponding images. Results 
in Fig. 2f show that our network performs better than a naive linear 
model over the entire weight range.

We looked at the typical sequence of tactile maps immediately before 
and after an object is grasped (an example is shown in Fig. 3a) to under-
stand the grasp in depth. The hand is increasingly articulated to fit 
the object closely, during which time the proprioceptive signal in the 
tactile map increases gradually until contact during the ‘reach’ phase2. 
When contact is first made with an object (‘load’ phase), the mean 
pressure of the frame increases suddenly, resulting in a steep temporal 
gradient; the red dot shows the detected frame. In brief, we identify 
the prior local minimum as the frame just before contact (blue dot), 
which has the maximum hand pose signal (see complete processing 
details in the Methods). This empty hand pose frame is subtracted 

from the local maximum frame (green dot; lift and hold phase), which 
is treated as the frame with the maximal object information. This 
approach helps in decomposing the tactile map into the hand pose 
signal and the object-related pressure map (a detailed description of the 
decomposition is included in the Methods). We analysed the Pearson 
correlation coefficient between a selected sensor and the remaining 
sensors in the glove as shown in Fig. 3b. Our correlations are shown 
in the range from 0 to 1; we did not observe any substantial negative 
correlations between sensors. We find the largest correlations between 
the fingertips and the thumb base, where the forces are dominantly 
applied; this is an expected signature of precision grip in humans. The 
measured correlations for each sensor can be viewed in our interactive 
map (Supplementary Data 2). The corresponding correlation between 
sensors at the fingertips and the full hand, with the decomposed hand 
pose signal shows little structured correlation, in part demonstrating 
the effectiveness of our decomposition method (Extended Data Fig. 9). 
Canonical-correlation analysis on the decomposed object-related tac-
tile map across the different regions of the hand shows the collaborative 
role between the distal phalanges of the large fingers, which is most 
often used in generating forces during object grasps (Fig. 3c). In the 
other phalanges, the distribution is more uniform, corresponding to 
closed grasps where a large part of the hand surface is in contact with 
the object at once (see Supplementary Data 2 for an interactive map 
of the region-level correlations). The correlations between different 
sensors indicate the collaborations between different hand regions; 
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Fig. 3 | Cooperativity among regions of the hand during object 
manipulation and grasp. a, In a typical interaction sequence, the hand 
increasingly gets articulated until the point of contact (reach phase) and 
experiences a sudden rise in tactile forces as the object is held. We use the 
maximum gradient (red) in the load phase of the action to decompose a 
tactile map of when the object is held into two parts—the hand pose signal 
(blue) and the object-related pressure (blue frame subtracted from the 
green frames). The object interaction frames are automatically detected 
and marked in green; full signal decomposition details are described in 
the Methods. b, The set of decomposed object-related pressure frames can 
be used to extract correlations between specific sensors and the full hand. 

The maps here show the correlations between select pixels (marked in the 
central hand) and the full hand. Most fingertips are used with other fingers 
and the thumb (a signature of precision grasp), whereas the regions on 
the palm are typically used when grasping objects that cause the full palm 
to come into contact with the object (see Supplementary Data 2). c, The 
circular plot shows the relative correspondences between different parts 
of the hand (see Methods; Supplementary Data 2 also contains interactive 
maps of region-level and finger-level correspondences). The distal 
phalanges of the large fingers are usually used with the thumb to generate 
forces while gripping an object and result in strong concurrence.
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the nature of the human grasp is known to be collaborative27,28. We 
have thus empirically and quantitatively observed such collaborations 
and their spatial extent purely from high-resolution tactile signals. To 
directly test the proprioceptive content of the tactile signals from the 
STAG, we articulated specific hand poses in the absence of an object 
(see G1 to G7 in Extended Data Fig. 10a) based on a standard grasp 
taxonomy29. We observed that the tactile maps related to specific hand 
poses can be classified with 89.4% accuracy; a visualization of the clus-
tering using t-distributed stochastic neighbour embedding (t-SNE) 
is shown in Extended Data Fig. 10b; confusion matrix from the classi-
fication test is shown in Extended Data Fig. 10c; an interactive version 
of the map is included in Supplementary Data 3. Although hand recog-
nition from visual images has become increasingly robust30, extracting 
other meaningful feedback signals (such as establishing contact with an 
object) remains challenging without a scalable tactile sensing strategy.

Our results demonstrate the broad utility of high-dimensional tactile 
sensors as well as highlight their enabling potential for future work. 
The current study focuses mainly on the spatial relationships of tactile 
signals; the dataset also presents important relationships between sen-
sors that are temporally linked together. These temporal relationships 
spotlight the dynamics of actions performed by humans. Linking these 
temporal relationships along with the spatial correspondences between 
tactile signals would greatly enhance our understanding of the basic 
principles of dexterous manipulation. Likewise, the dataset presented 
here also contains synchronized visual information along with the tac-
tile data. In this regard, the STAG is a useful testbed for multimodal 
learning across visual and tactile domains, which is potentially useful 
for robotics applications. Finally, the STAG hardware platform itself 
can be augmented, for example, the STAG could be fitted with diverse 
sensors that mimic the different sets of mechanoreceptors in the human 
hand. In addition, transmitting data wirelessly from a wearable module 
and more compact packaging will extend its utility in manipulation 
tasks that require considerable mobility.

Online content
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Methods
STAG sensor fabrication. The STAG consists of a sensing laminate attached 
to a light, custom-knit glove designed not to interfere with hand movements 
(loosely knitted at half-gauge on a Shima Seiki SWG091N2 15-gauge v-bed knit-
ting machine). The sensing laminate is made by first laser-cutting (Universal PLS 
6.150D CO2 laser cutter; Universal Laser Systems) the force-sensitive film (FSF) 
(3M Velostat electrically conductive copolymer 0.1 mm thick; Adafruit Industries) 
to fit a hand. To prevent movement of the FSF during the laser cutting process, 
we attach the film to an acrylic board with a thin layer of water. The laser-cut film 
is washed to remove debris from the surface. The laser-cut pattern includes holes 
to route conductive thread electrodes (3-ply stainless steel conductive threads of 
12 μm fibre diameter and about 0.34 mm overall diameter; SparkFun Electronics) 
and slots at the finger joints to allow unrestricted movement (pattern in Fig. 1b; 
original design is available from the corresponding author). The conductive threads 
are sewn with a needle on either side of the FSF, ensuring that there are no points of 
direct contact between electrodes. Regions of overlap between the 64 row and col-
umn electrodes respond to forces through a change in the through-film resistance. 
The electrodes are first held taut and then subsequently held in place by attaching 
a thin, stretchable, two-sided acrylic adhesive tape (3M 468MP 200MP adhesive 
0.13 mm thick) on both sides. The two exposed sides of the adhesive are insu-
lated with a thin, stretchable polybutylene-coated LDPE film (about 13 μm; Saran;  
S.C. Johnson & Son). The laminate architecture is shown in Fig. 1b and Extended 
Data Fig. 3b. The exposed conductive threads are coated with a polydimethyl-
siloxane mixture (PDMS, 1:10 ratio of crosslinker to pre-polymer; SYLGARD 
184, DOW Corning). The PDMS-coated conductive thread electrodes are sepa-
rately cured on a hot plate at 60 °C for 2 h and left overnight at room temperature.  
The PDMS-coated conductive thread electrodes are attached to insulation- 
displacement connectors that can be connected to the readout circuit. Forming 
robust electrical connections with the conductive thread electrodes is typically 
challenging. Using PDMS to insulate the conductive threads and subsequently 
using insulation-displacement connectors resulted in robust electrical contacts, 
which was critical for the long-term use of the STAG. Likewise, the robustness 
of connections between fingers is critical to the long-term stability of the STAG. 
Furthermore, they are required to allow free movement of individual fingers with-
out hindering motion and object interactions. We used a single conductive thread 
reaching through all the fingers for each row and insulated the region between 
fingers using the acrylic adhesive tape and LDPE film to form insulated ribbons 
routed along the sides of fingers (seen between fingers in Extended Data Fig. 1a, b).

The regular 32 × 32 array version of the sensor laminate was fabricated using 
a process similar to that described above. In this case, a square of FSF was cut and 
assembled into a laminate in two separate versions. Extended Data Figure 3b shows 
a design that is identical to the version used in the STAG. Extended Data Figure 
3a shows a simplified version of the above design by replacing the adhesive film 
and LDPE film with a 25.4-μm-thick polyimide film with adhesive on one side. 
Although it is simpler in construction, since the polyimide film is inextensible, we 
observed that this design (Extended Data Fig. 3a) is less flexible than the STAG 
laminate architecture, and is therefore better suited for use in fixed conditions. 
The spacing between the electrodes was set to 2.5 mm using a specially designed 
thread layout tool (Extended Data Fig. 3c). The layout tool consists of two pieces 
of acrylic, one of which has laser-etched grooves to hold the conductive threads in 
place with the correct spacing. The two designs in Extended Data Fig. 3a, b were 
used to fabricate the square 1,024-element sensor array shown in Extended Data 
Fig. 3d, e respectively.

Auxetic designs of the sensor (10 × 10 elements) were designed by first pattern-
ing the FSF with the design shown in Extended Data Fig. 5b. The holes allow the 
conducting threads to be routed (red and blue traces) to enable stretching. The cuts 
in the FSF allow individual sensor squares to rotate and enable extensibility in all 
directions. A close-up of the FSF after routeing the conductive threads is shown in 
Extended Data Fig. 5c. The double-sided adhesive and LDPE film (as in Extended 
Data Fig. 3b) are then added to both sides and the slots identical to those on the 
FSF are cut with a scalpel. The conductive thread electrodes are subsequently insu-
lated with PDMS, and then connected to the insulation-displacement connector 
(finished design in Extended Data Fig. 5d). The auxetic sensor array can be folded, 
crushed and stretched in different directions as shown in Extended Data Fig. 5e, f.
STAG sensor characterization. To characterize individual sensor responses, we cut 
approximately one-inch squares of the FSF and attached orthogonal electrodes on 
either side as in the STAG architecture (inset of Extended Data Fig. 2f). The typical 
sensor force response was measured by applying controlled normal forces using a 
table-top mechanical tester (Instron 5944; Instron) and simultaneously recording 
the electrical resistance using a Sourcemeter (2611B Keithley Instruments). The 
loading rate was controlled at a specific strain rate in all tests (0.05–0.1 mm min−1) 
until a maximum load of 0.5 N or 5 N was reached for the results shown in Fig. 1c 
and Extended Data Fig. 2a, b. For the long-term tests in Extended Data Fig. 2c, d,  
we cycled the force between 20 mN and 0.5 N for 1,000 cycles at a controlled 

strain rate of 2.5 mm min−1. The differential scanning calorimetry (DSC) meas-
urements were performed using a TA Instruments Q100 DSC (TA Instruments) 
at a temperature ramp rate of 10 °C min−1. The differential scanning calorimetry 
measurements show that the material is probably a two-polymer blend that softens 
at temperatures around 100 °C. FSF is considered to be thermoformable, but to 
directly check the feasibility of thermoforming our sensor and studying the tem-
perature stability, we placed fabricated single-element prototypes in a convection 
oven at controlled temperatures for 10 min and measured the resistance through 
the film after removal from the oven (Extended Data Fig. 2f). The sensors show 
large changes in the resistance beyond 60 °C.
Circuit architecture and design. The passive matrix design of the STAG makes 
the fabrication simple and the design easily extensible to multiple platforms. 
However, immediately after fabrication, any two electrodes will appear to be elec-
trically shorted together owing to a large number of spurious current paths; this 
is well known in passive arrays. A signal isolation circuit is required to overcome 
the extensive crosstalk between sensors31. It is possible to eliminate a majority of 
crosstalk and parasitic effects using a balanced readout scheme. Here we used an 
improved version of an electrical-grounding-based readout architecture22 where 
one row of the sensor currently being read is grounded while all other rows are 
maintained at the reference voltage Vref (2.5 V in our design; see Extended Data 
Fig. 1c, d; active row is indicated by a grey arrow). The current between all resistors 
in other rows is ideally 0 A since the voltage difference across all the resistors is 
0 V. During this state, a 32:1 analog switch is used as an analog demultiplexer to 
raster through the row and read individual resistances one by one. After completing 
measurements at the active row, the 32 single-pole double throw (SPDT) switches 
are used to ground the next row while returning the currently active row to Vref. We 
added charging resistors, Rc, to each column to charge the inverting node of each 
amplifier back to Vref quickly and to reduce the input noise. We observed that this 
led to a more stable readout of the resistances without affecting the actual potential 
at the output of the amplifier. Note that the Rc arm of the circuit in each column is 
analogous to an adder circuit where one input is always 0, that is, the input to the 
Rc arm is Vref which is the same as the voltage at the non-inverting terminal of the 
amplifiers. Rastering through the readout resistors in the matrix is controlled by 
an Arduino Nano by switching the 32 SPDT switches and the 32:1 analog switch. 
The single sensor measurement at the output of the analog switch is converted to a 
digital signal (10-bit resolution; 0–1,023 corresponding to 0–5 V) and transmitted 
serially to a computer. An image of the fabricated printed circuit board is shown in 
Extended Data Fig. 1d, with the insulation-displacement connector cables inserted 
to connect the sensor array (seen at the top-right and bottom).
Dataset acquisition methods. Previous psychophysics studies on human tac-
tile performance have used carefully designed experimental conditions (objects, 
awareness and tasks) that are each motivated by the purpose of the study. For 
instance, to demonstrate the orientation dependence of human tactile perfor-
mance, previous studies have used protocols with blindfolded humans interact-
ing with artificial objects of similar properties that are fixed in space32. Likewise, 
careful experimental designs have also been implemented in tactile interaction 
studies in robotics33. Our general objective here is to learn from successful human 
interactions with objects, which are typical of daily interactions. Our data acqui-
sition methods were designed with this in mind, and motivated by a few cues 
from seminal human tactile perception studies of the past three decades28,34,35. 
In particular, the use of everyday objects is better as opposed to artificial objects 
(unless critically required for the task32) since human performance in object inter-
action and identification is underestimated when unfamiliar objects are used34. 
Therefore, the STAG prototype was used to record single hand manipulation of 
26 different common objects with a few different sizes, weights and materials 
(Extended Data Fig. 6).
Visually aware and blindfolded conditions. The task setup influences the general 
hand movements and interactions in haptics and tactile recognition28,35. Therefore, 
the level of awareness of objects during interactions is a critical part of experi-
mental design. In this regard, human perception studies have shown that blind-
folded subjects can identify common objects within 2–3 s almost perfectly; this 
interval increases to about 16 s when wearing a glove but with no loss in accuracy 
(summarized in a review35). In blindfolded interactions, the level of awareness 
increases during these intervals, and the interactions become fully aware once 
the object is identified. Our large-scale dataset was captured with complete visual 
access to the object (visually aware); it allows us to record human interactions 
with a constant level of awareness of the object at each frame. Each object was 
manipulated for 3–5 min at a time and included several different grasps and touch 
sequences. However, given that the objects are in sight, some of these grasps are 
more discriminative (that is, object-dependent). To test the generality of this vis-
ually aware dataset, we also performed a blindfolded study where each interaction 
was terminated as soon as the object was identified (at the moment the subject is 
aware of the object). Our original CNNs that were trained purely on the visually 
aware dataset were used in evaluating the blindfolded test set.
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The blindfolded tests were performed by the subject (S.S.), where the task was 
to identify the object. In all these tests, the objects were placed on a soft foam sur-
face to reduce sounds and the subject was made to listen to white noise through 
headphones. The tactile recording was started and the shoulder of the subject 
was tapped. The subject was asked to interact with the object, identify it and hold  
the object still. The tests were stopped as soon as the object was identified. Typically, 
the objects were identified by the subject in 6.16 ± 2.65 s (Supplementary Fig. 6a). The 
tasks were performed continuously 104 times (4 times for each of the 26 objects) in 
a randomized order. One additional task was performed without any object as an 
empty hand control. The objects were identified correctly by the subject in 103 out 
of the 104 tests. The last 5 frames from each identification attempt (total 20 frames 
per object from 4 identification attempts) were used for a classification test using a 
CNN trained only on the visually aware data. The confusion matrix for this test is 
shown in Supplementary Fig. 6b. We observe that the lighter objects are harder to 
identify more accurately using a single input frame, and the single-input (N = 1) 
top-1 classification accuracy is 28.19% (top-3 classification accuracy of 49.91%). 
Overall, the performance is slightly worse than the single-input classification tests 
of the frames from the visually aware dataset (N = 1, top-1 classification accuracy 
about 37.97% and top-3 classification accuracy about 60.43% in Fig. 2b). The ability 
to identify objects using tactile frames from blindfolded tests using the original 
CNN trained only on the visually aware dataset demonstrates that a general set of 
object interactions is probably captured in the visually aware dataset.
Dataset acquisition metrics. In addition to recording interactions with 26 objects, 
we recorded the empty hand data while articulating the hand without interacting 
with any object. In all cases, we also recorded corresponding visual images from 
the experiment using a FLIR GS2-GE-20S4C-C camera for illustration. Overall we 
recorded 135,187 frames for the visually aware dataset used for the object identifi-
cation task. All experiments (visually aware and blindfolded tests) were performed 
by S.S. using a STAG worn on the right hand. We recorded the tactile maps from 
the glove along with timestamps (and corresponding visual frames) at an average 
frame rate of 7.3 frames per second. Each object sequence was recorded three 
times over different days and in a randomized order for the visually aware dataset.

A similar procedure was followed with the same set of objects in recording the 
dataset for the weight estimation task. To ensure that the weight of an object is not 
trivially associated with a particular grasp type, we standardized the grasp used in 
the recording to be identical for all objects. Each object was picked up from above 
using a multi-finger grasp (see Extended Data Fig. 8a for example images) where 
the weight of the object was supported by the fingers and the thumb. During each 
recording, the selected object was grasped, lifted, held and dropped to a flat table 
multiple times. The procedure was repeated in 10-s intervals for a total duration 
of 1 min. Each object was recorded in multiple recording sessions. In total, we 
recorded 11,682 frames for the weight estimation dataset.

Finally, we recorded a dataset of different articulated hand poses (empty hand 
and G1 to G7; Extended Data Fig. 10) based on a standard grasp taxonomy29 to 
analyse the proprioceptive content of the tactile information recorded with the 
STAG. We recorded each articulated hand pose in random order over 7 different 
recording sessions and collected 24,037 frames in total. The processing details are 
described in the ‘Hand pose’ section.
Object identification. Processing and network design. The overall object identifi-
cation scheme relies on the use of CNNs to extract meaningful information from 
tactile signals and classify objects. There are many examples of the use of CNNs 
with tactile sensors, especially in the context of robotics36–39. This section describes 
the full details of our tactile data processing and network architecture.

The recorded tactile dataset (135,187 frames) contained useful signals in the 
range 500–650 (0–1,023 corresponds to 0–5 V at the amplifier output using a 10-bit 
ADC). The tactile map, transmitted as a 32 × 32 map from the readout circuit, 
is first normalized from 500–650 to 0–1. We discard all frames with any sensor 
reading over 950, which results from shorted electrodes; this happens when the 
STAG is punctured by a sharp metal object, and is therefore rare and is easy to 
detect. We next remove frames without any useful signal when the hand is not in 
contact with the object. We use the empty hand recording as a reference and detect 
the maximum response for each sensor over time. We then consider a frame with 
an object to be valid if at least one sensor response is above the maximum response 
found in the empty hand recording. After filtering we obtain 88,269 valid frames.

To estimate the accuracy of the above frame-classification method, we manually 
inspected a random sequence of 150 frames from five different recordings (allen 
key set, multimeter, tape, mug and the foam model of a brain). In our inspection, 
we used the temporal sequence of both the tactile signals and the synchronized 
visual frames to determine the state of the grasp and to validate the threshold-
ing-based algorithm. This allows us to notice changes in the pressure, object posi-
tion and hand position, consequently making it easier to check for contact, and 
partially alleviates difficulties with occlusion. We observe that out of these 750 
frames, there were only 57 false negatives (7.6%) where an object contact was 
omitted and only 3 false positives (0.4%) where a fake contact was detected. The 

main sources of false negatives are the weak contacts at the onset of the grasp where 
the pressure signal is weak; soft objects are more prone to this issue (24 for the foam 
model of a brain versus 1 for the mug). The main sources of false positives are the 
occasionally pronounced hand poses. This issue is rare because we threshold our 
data based on the empty-hand dataset, which covers a large range of possible hand 
movements. Overall, our automatic frame classification method is conservative 
and presents clean data.

We then split the dataset into training and test subsets; out of the three sets of 
trials in the visually aware dataset, we used two sets of trials for training, and one 
set of trials for testing. Each subset was randomly subsampled to contain a balanced 
number of valid frames for each of the object classes (26 objects and empty hand 
recording). The training set has a total of 36,531 frames (1,353 per class), and the 
test set has 16,119 frames (597 per class).

With the aim of predicting an object’s identity based on its tactile signature, 
we treat each recording trial of a given object as a single instance of the prob-
lem, which simulates an agent exploring an object using multiple grasps. We feed 
N = 1...8 frames from the recording to the deep neural network to accommodate 
information from different grasp configurations and provide more varied sensory 
data. When we use N > 1 input frames to our network during evaluation we con-
sider two different strategies for their selection. The first one is a simple random 
choice of N frames from the recording. The second is aimed at minimizing the 
redundancy of data between the N frames by maximizing their variance. For this, 
we use principal component analysis to reduce the dimensionality of the tactile 
signal to 8. We then find N clusters via k-means clustering (Fig. 2e); that is, we 
complement every randomly selected input frame with N − 1 other frames, each 
of which belongs to a different cluster.

We use a modified version of the ResNet-18 architecture24 as the base of our 
network (Fig. 2a). We reduce the filter size of the initial convolution layer from 7 
to 3 and the stride from 2 to 1. This allows the entire filter to fit within the smallest 
features in our sensor data (finger width is 3 pixels). Since our inputs are 32 × 32 
pixels, we remove the upper two of the four ResNet layer groups leaving the final 
feature vector size to be 128 values. To reduce overfitting to our training, set we 
introduce a spatial dropout layer40 with 20% drop probability between the two 
remaining block layers. Additionally, we also augment our training data by additive 
Gaussian noise with zero mean and a standard deviation of 0.015 during training. 
To incorporate multiple input frames, we apply the same network with shared 
weights to each input. The outputs of all network branches are then concatenated 
and reduced to 128 dimensions by a per-pixel convolution. After spatial averaging, 
a final fully connected layer computes the classification vector. We implemented 
this network in the PyTorch (https://pytorch.org/) deep learning framework41. We 
use Adam solver implemented in PyTorch to train our model and minimize the 
cross-entropy loss. We apply an initial learning rate of 10−3, which we decrease by 
a factor of 10 every 100 epochs. We train the network using our training dataset for 
200 epochs with batches of 32 samples. We report the average results over 10 train-
ing runs. Similar methods were used for the training and classification tests used to 
evaluate different sensor resolutions (results in Supplementary Fig. 5). In all cases, 
the tactile data was downsampled (by averaging) and resized to an input size of 
32 × 32 in order to use the same network. These inputs were used for training and 
subsequent classification tests using methods identical to those described above.

The 3 × 3 filter of the first convolution layer is not easy to interpret visually 
owing to the low resolution. Therefore, we trained a scaled version of the model 
with the first convolution increased to 9 × 9 and the stride to 3, for visualization. 
Max pooling layers reduce the dimensionality of the model by spatially selecting 
the locally highest activation values and are used in both versions of the model. We 
adapted the filter size of the first max pooling layer to 7 and its stride to 4 to make 
the resulting features similar to the original model. We also scaled the resolution 
of the inputs identically (by 3) using bilinear upsampling. The remainder of the 
model and the training procedure stayed the same. The learned convolution filters 
are shown in Fig. 2d; the resulting features and performance are similar to the 
original model. See Extended Data Fig. 7i for the corresponding 3 × 3 convolution 
filters learned by the original network. The first convolution filters of the standard 
ResNet-18 architecture pre-trained on ImageNet25 are shown in Extended Data 
Fig. 7j for comparison.

To further understand the internal representation of the CNN, we perform 
Network Dissection42, a widely used technique for analysing the deeper layers of 
a network. Specifically, for any convolution filter, the method first ranks the tactile 
maps according to the highest activation value. We subsequently select the tactile 
frames that rank first with the highest activations from each object category. This, 
in essence, shows the top candidates that different convolution filters have learned 
to look out for. Supplementary Figure 4 highlights the activations of a few repre-
sentative convolution filters in both the first and the second ResNet blocks. In each 
pressure map, the yellow contours highlight the regions where these convolution 
filters are most activated. Typically, a threshold of 0.2–0.5 times the peak activation 
is used to generate these contours; here we use 0.3 times the peak activation for 

https://pytorch.org/
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these visualizations. We observe that the convolution filters in the first of the two 
ResNet blocks are most activated in smaller, spatially confined regions around the 
tactile signal peaks. However, interesting grasp-related concepts emerge in the 
second ResNet block. For instance, these filters are activated by different object 
patterns or by specific regions of the hand such as the palm or the thumb.
Weight prediction. Dataset. We performed identical pre-processing of frames as 
for the classification task to obtain normalized 32 × 32 tactile maps. The collection 
sequence of the grasping procedure for weight estimation was predetermined; we 
used the frames between 4 s and 6 s of each sequence when the object was held 
(2,301 frames). To prevent the problem from being reduced to a simple classifica-
tion task where each weight is associated with an object, we used a ‘leave-one-out’ 
approach where the object whose weight is predicted is not part of the training data.
Regression. Our goal is to predict weights (in grams) for a previously unseen object 
based on a single tactile frame; unlike object recognition, weight estimation is possi-
ble as soon as an object is held. Here we use a similar ResNet-based network architec-
ture. Because this task is based on a single frame input, we remove the input branch 
concatenation (retaining a single branch of the CNN alone) and directly apply a fully 
connected layer to regress the weight. Owing to the wide range of object weights in 
our dataset, we perform the prediction in the logarithmic space. We optimize the 
parameters of our model by minimizing the mean squared error between the pre-
dicted and measured ground truth weights (in logarithmic space). We used the same 
optimizer and learning parameters as before and train the network for ten epochs.

We construct a linear baseline for the weight estimation. This is motivated by 
the fact that the weight of an object is directly linked to the sum of all forces it 
applies when the object rests on a horizontal surface (that is, the naive estimate of 
weight is aX + b, where X is the sum of the tactile map). This baseline is not valid 
in practice, however, because the tactile response is affected by the articulation of 
the hand (grasp), as well as by the surface friction and the additional force used to 
avoid slipping. We used the same ‘leave-one-out’ training procedure to find the best 
choice of a and b that minimizes the mean squared error between the prediction 
and ground-truth weight in logarithmic space.

Figure 2f compares the results of our network with the linear baseline model. 
The error for each object corresponds to a different instance of our model trained 
with that particular object left out from the training dataset. We also computed 
a mean predicted error across all objects expressed in grams in linear space. We 
found that the average prediction error of our model is 56.88 g, which is less than 
the 89.68 g of the naive linear model. This result shows that nonlinear behaviours 
connected with grasps and the physical properties of the objects cannot be omitted 
and that the neural network can compensate these to some extent. The weight 
estimation errors in different weight ranges are listed in the table in Extended 
Data Fig. 8b. We observe that the CNN outperforms the linear baseline in all cases. 
Furthermore, the estimation errors are also listed as relative errors (normalized by 
object weights); this is analogous to the Weber fraction used in the tactile weight 
perception literature26. We also tested an additional modification to the linear 
baseline by removing the hand pose component from the tactile signal using the 
methods outlined in the section ‘Decomposing signal and sensor correlations’ 
and Fig. 3a. We observed that the modified linear baseline did not present any 
noticeable improvement over the naive baseline approach, and the performance 
of the CNN was better than both linear methods. We believe that this is due to the 
complex relationship between the tactile signals and the weight estimates and this 
is borne out by previous weight perception studies43.

It is noteworthy that humans rely both on cutaneous and kinaesthetic senses 
(and their inertial responses during object interactions) to gauge weight effectively. 
The Weber fraction is known to be about 1/3 when using the cutaneous sensors26. 
Our estimated metric analogous to the Weber fraction is similar for moderately 
heavy to heavy objects (Extended Data Fig. 8b); this performance is comparably 
good considering that the human hands possess additional types of mechanore-
ceptors that are not used here.
Hand pose. Dataset. To evaluate whether hand pose (proprioceptive) information 
can be retrieved from the glove even when no objects are being manipulated, we 
picked seven distinct grasps from the grasp taxonomy29 (along with a neutral hand 
pose for reference). We chose these specific grasps because they are often used 
and involved object interactions at the palmar side of the hand, which is covered 
with sensors in the STAG. Furthermore, we articulate each hand pose back and 
forth from the neutral hand pose; this covers a larger set of grasps in the taxonomy 
and increases the intra-class variance. We removed ambiguous articulations of the 
hand (close to the neutral pose) by thresholding. Frames with a mean pressure 
signal higher than 75% of a local dynamic range in a symmetric window with a 6-s 
temporal radius were considered as reliably valid hand poses. This filtering step 
reduced the number of frames to 7,697.
t-SNE embedding. We applied t-SNE44 to the tactile frames to discover structure 
in the signal and to evaluate its dependency on the performed hand pose. We first 
reduce the dimensionality of our pressure readings from the original 548 active 
sensors to 50 using principal component analysis and then applied t-SNE to obtain 

the final two-dimensional projection presented in Extended Data Fig. 10. The 
network described in the ‘Object identification’ section was also used to train and 
classify the hand poses from single tactile maps with 89.4% accuracy (average of 10 
runs; 3,080 training frames and 1,256 distinct test frames). The confusion matrix 
corresponding to these tests is shown in Extended Data Fig. 10c. Most grasps can 
be identified correctly except for G1 and G6, which are occasionally confused.
Decomposing signal and sensor correlations. We computed the mutual correla-
tion of the sensors over our entire object identification and classification dataset. 
Each recorded frame contains two different signals: the hand pose signal and the 
object-related pressure due to forces between an object and the hand. The hand 
pose signal denotes the articulation of the hand and would be present even in the 
absence of an object. We assume the hand pose signal to be saturated once the 
hand reaches full articulation just before contact (reach phase in Fig. 3a). This 
simplification holds in a majority of cases where the hand articulation does not 
change much after initial contact. In this condition, the additional force due to 
an object contact can be superimposed on the articulated hand. By design, the 
sensors respond to normal compressive force components between the upper and 
the lower electrodes. Therefore, the force components picked up by the sensors can 
be treated as additive. Furthermore, the output of the sensors as seen at the output 
of the amplifier circuit or the ADC is linear with respect to the applied force in the 
working range (see Supplementary Fig. 2).

To extract the hand pose signal and the object pressure signal from the tactile 
frame, we implement the following decomposition procedure. We first compute 
the mean pressure response for every frame of each recording and filter it over time 
with a symmetric Gaussian kernel with the three-frame standard deviation (around  
400 ms) to remove noise. The gradient of this signal (as a forward difference) can 
show possible object contact points as local maxima of the gradient (symmetrical 
window of five frames; about 700 ms). Considering that the presence of two distinct 
contacts in this window is unlikely, we first locate the nearest preceding minima (up 
to 20 frames away) of the filtered mean pressure signal. To ensure that this minimum 
is reliable and to avoid detecting random pressure fluctuations, we require the mean 
pressure value to be below 20% of the recording dynamic range. Similarly, we find 
the next local maxima and ensure it is larger than 20% of the dynamic range of the 
recording. The minimum and maximum are marked as the empty hand pose frame 
(blue dot in the reach phase; Fig. 3a) and as the object manipulation frame (green 
dot in the lift and hold phase). To recover a larger amount of useful data, we further 
explore the frames surrounding the local maximum frame and include every frame 
up to a symmetrical 80-frame radius to the object pressure set until a frame that 
does not appear to be valid; here, valid frames are those that lie above the detection 
threshold (0.5) in this normalized scale. The empty hand pose was subtracted from 
each of the object manipulation frames to recover the pure object-related tactile data.

To evaluate the effectiveness of this decomposition process, we manually 
analysed the first 60 s of recordings with five random objects of different sizes 
and weights (full cola can, mug, multimeter, pen, and tape). We observe that 64 
grasps were detected out of the 93 while only producing 4 false positive detec-
tions. Typically, more detections were missed for light objects compared to heavier 
objects (for example, 12 for the tape versus 2 for the full cola can). Furthermore, the 
location of the before-contact point (blue) was on average 1.7 frames before the true 
location. The first detected object-contact point (first of the green frames) was on 
average 3.5 frames after the true location. Our algorithm is therefore conservative 
as it does not produce data from false locations and places the empty hand sample 
safely in the pre-contact space, as well as uses reliable post-contact frames as a 
source for extracting the object signal.

Pearson correlation coefficient and canonical-correlation analysis were used 
to analyse the correlations between sensors and sensor groups separately on the 
decomposed hand pose data and the decomposed object-related tactile data. 
Pearson correlations coefficients based on single sensor correlations uncover local 
relations between neighbouring sensors but are sensitive to the selection of specific 
sensors and do not present overall trends. To extract phalange level correlations, 
we used canonical-correlation analysis; results are shown in a circular plot45 in 
Fig. 3c. The three finger phalanges, starting at the palm and going outward, are 
proximal, intermediate and distal. Note that the thumb does not have an interme-
diate phalanx by standard convention. Since canonical-correlation analysis always 
results in larger correlations than those achieved at the individual sensor level, we 
show the differences in the relations by subtracting the minimum correlation; the 
intermediate phalanx of the little finger and the proximal phalanx of the index 
finger show minimum correlation.
Hardware designs and firmware availability. Printed circuit board designs and 
firmware files, and STAG design files are available from the corresponding author.

Code availability
Custom code used in the current study is available from the corresponding author 
on request.
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Data availability
Source data for key figures in the manuscript are included as interactive maps 
in Supplementary Data 1–3. Please load (and refresh) all ‘∗.html’ pages in Firefox or 
Chrome. The tactile datasets generated and analysed during this study are available 
from the corresponding author on request.
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Extended Data Figure 1 | STAG images and readout circuit architecture. 
a, Image of the finished STAG just before the electrodes are insulated.  
b, Scan of the STAG. c, Electrical-grounding-based signal isolation circuit 
(based on ref. 22). The active row during readout is selected by grounding 
one of the 32 single-pole double throw (SPDT) switches. A 32:1 analog 
switch is used to select one of the 32 columns at a time. Here Rc is the 

charging resistor, Vref is the reference voltage, and Rg sets the amplifier 
gain. d, Fabricated printed circuit board that interfaces with the STAG. 
The two connectors shown on the top right and bottom are connected to 
the column and row electrodes of the sensor matrix. The charging resistors 
(Rc) are on the back of the printed circuit board.
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Extended Data Figure 2 | Characteristics of the STAG sensing elements. 
a, The resistance of a single sensing element shows the linear working 
range (in logarithmic force units). The sensor is not sensitive below 
about 20 mN of force and saturates in response when a load exceeding 
0.8 N is applied. b, Response of three separate sensors in the force range 
20 mN to 0.5 N. The sensors show minimal hysteresis (17.5 ± 2.8%; 
see Supplementary Fig. 2). c, The sensor response after 10, 100 and 1,000 

cycles of linear force ramps up to 0.5 N for three separate devices. The 
resistance measurements are shown in d over the entire set of cycles.  
e, Differential scanning calorimetry measurements of the FSF material 
shows a two-polymer blend response with softening/melting temperatures 
of around 100 °C and 115.1 °C. f, Through-film resistance of an unloaded 
sensor after treating at different temperatures in a convection oven for  
10 min. The film becomes insulating above about 80 °C.
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Extended Data Figure 3 | Sensor architectures and regular 32 × 32 
arrays. a, A simplified version of the sensor laminate architecture. b, The 
sensor is assembled by laminating a FSF along with orthogonal electrodes 
on each side, that are held in place and insulated by a layer of two-sided 
adhesive and a stretchable LDPE film (see Methods). c, Fixture used to 

assemble parallel electrodes. The individual electrodes can be threaded 
into the structure (like a needle) for assembling parallel electrodes with a 
spacing of 2.5 mm. d, Assembled version of the architecture shown in a.  
e, A regular 32 × 32 array version of the STAG based on the design  
in b.
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Extended Data Figure 4 | Sample recordings of nine objects on regular 
32 × 32 arrays on a flat surface. Nine different objects are manipulated 
on a regular sensor array (Extended Data Fig. 3d) placed on a flat surface. 

The resting patterns of these objects can be seen easily. Pressing the tactile 
array with sharp objects like a pen or the needles of a kiwano yields signals 
with a single sensor resolution.
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Extended Data Figure 5 | Auxetic designs for stretchable sensor arrays. 
a, Standard auxetic design laser cut from the FSF. b, The actual design 
of the auxetic includes holes to route the electrodes (shown in red and 
blue), and slots allow the square, sensing island to rotate, enhancing 
the stretchability of the sensor array. c, Close-up of the fabricated array 

showing the conductive thread electrodes before insulation. d, A fully 
fabricated 10 × 10 array with an auxetic design. e, Auxetic patterning 
allows the sensor array to be folded, crushed and stretched easily with 
no damage. f, The array can also be stretched in multiple directions (see 
Supplementary Video 2).
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Extended Data Figure 6 | Dataset objects. In total, 26 objects are used in our dataset; images of 24 objects are shown here. In addition to these objects, 
our dataset includes two cola cans (one empty can and one full can).
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Extended Data Figure 7 | Confusion maps and learned convolution 
filters. a–h, The actual object and predicted object labels are shown in 
these confusion matrices for different networks, each taking 1 to 8 (or 
N) inputs where each input is obtained from a distinct cluster for N > 1 
(approach shown in Fig. 2e; see Methods). These matrices correspond 
to the ‘clustering’ curve in Fig. 2b. Objects with similar shapes, sizes or 
weights are more likely to be confused with each other. For example, the 
empty can and full can are easily mistaken for each other when they are 

resting on the table. Likewise, lighter objects such as the safety glasses, 
plastic spoon, or the coin are more likely to be confused with each other 
or other objects. Large, heavy objects with distinct signatures such as 
the tea box have high detection accuracy across different numbers of 
inputs (N). i, Original first-layer convolution filters (3 × 3) learned by the 
network shown in Fig. 2a for N = 1 inputs. j, Visualization of the first-layer 
convolution filters of ResNet-18 trained on ImageNet.
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Multimeter Stapler Kiwano Scissors
a

b

Weight range  (g)

Errors

Linear baseline

Abs. (g) Rel. (Weber)

< 30 57.09 4.63

83.36 1.07

136.75 0.45

2.37 2.52 0.69

65.73 5.33

79.82 1.02

144.30 0.47

16.49 1.34

53.30 0.68

110.97 0.36

31 - 150

151 - 700

Overall error 89.68 94.24 56.88

Abs. (g) Rel. (Weber) Abs. (g) Rel. (Weber)

Linear baseline 
(Hand pose removed) CNN

Extended Data Figure 8 | Weight estimation examples and 
performance. a, Four representative examples from the weight estimation 
dataset, in which the objects are lifted using multi-finger grasps from the 
top (see Supplementary Video 6 for an example recording). b, The weight 
estimation performance is shown in terms of the mean absolute and 

relative errors (normalized to the weight of each object) in each weight 
interval. The relative error is analogous to the Weber fraction. We observe 
that the CNN outperforms the linear baseline with or without the hand 
pose signal removed. The overall errors of the two linear baselines are 
comparable.
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0

1

Palm

Little finger

Ring finger Middle finger

Index finger

Thumb

Extended Data Figure 9 | Correspondence maps for six individual 
sensors using the decomposed hand pose signal. The hand pose signal 
decomposed from object interactions is used to collectively extract 
correlations between the sensors and the full hand (analogous to Fig. 3b 

where the decomposed object-related signal is used). The pixels at the 
fingertips show less structured correlations with the remaining fingers, 
unlike in Fig. 3b.
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Extended Data Figure 10 | Hand pose signals from articulated hands. 
a, Images of the hand poses used in the hand pose dataset. The poses 
G1 to G7 are extracted from a recent grasp taxonomy. In the recordings, 
each pose is continuously articulated from the neutral empty hand 
pose. b, When the tactile data from this dataset is clustered using 
t-SNE, each distinct group represents a hand pose. Sample tactile maps 
are shown on the right. The corresponding samples are marked in red 

(see Supplementary Data 3). c, The hand pose signals can be classified 
with 89.4% accuracy (average of ten runs with 3,080 training frames and 
1,256 distinct test frames) using the same CNN architecture shown in 
Fig. 2a. The confusion matrix elements denote how often each hand pose 
(column) is classified as one of the possible hand poses (rows). It shows 
that hand poses G1 and G6 are sometimes misidentified but the other 
hand poses are identified nearly perfectly.
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