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Abstract
Many real-world control problems involve con-
flicting objectives where we desire a dense and
high-quality set of control policies that are op-
timal for different objective preferences (called
Pareto-optimal). While extensive research in
multi-objective reinforcement learning (MORL)
has been conducted to tackle such problems,
multi-objective optimization for complex contin-
uous robot control is still under-explored. In this
work, we propose an efficient evolutionary learn-
ing algorithm to find the Pareto set approximation
for continuous robot control problems, by extend-
ing a state-of-the-art RL algorithm and presenting
a novel prediction model to guide the learning
process. In addition to efficiently discovering
the individual policies on the Pareto front, we
construct a continuous set of Pareto-optimal so-
lutions by Pareto analysis and interpolation. Fur-
thermore, we design seven multi-objective RL en-
vironments with continuous action space, which
is the first benchmark platform to evaluate MORL
algorithms on various robot control problems. We
test the previous methods on the proposed bench-
mark problems, and the experiments show that
our approach is able to find a much denser and
higher-quality set of Pareto policies than the ex-
isting algorithms.

1. Introduction
Multi-objective problems have received significant attention
because most real-world scenarios involve making trade-
offs with respect to different performance metrics. This is
especially true in robotic control, in which the notion of per-
formance usually involves different conflicting objectives.
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Figure 1. Parameter space and performance space of the
Pareto policies. (Left) The Pareto set is composed from a dis-
joint set of policy families in the N dimensional parameter space.
(Right) The policies from each family map to a continuous segment
on the Pareto front in the performance space.

For example, when designing a control policy for a running
quadruped robot, we need to consider two conflicting ob-
jectives: running speed and energy efficiency. In contrast
to a single-objective environment, which measures perfor-
mance using a single scalar value and where a single best
solution exists, with a multi-objective problem, performance
is measured using multiple objectives, and multiple opti-
mal solutions exist. One optimal policy may prefer high
speed at the cost of lower energy efficiency, whereas an-
other optimal policy might prefer high energy efficiency at
the cost of lower speed. In general, many optimal policies
exist depending on the chosen trade-off between these two
metrics. In the end, a human is responsible for selecting the
preference among different metrics, and this determines the
corresponding optimal policy.

One popular way of solving multi-objective control prob-
lems is to compute a meta policy (Chen et al., 2018). A meta
policy is a general policy that is not necessarily optimal but
can be relatively quickly adapted to different trade-offs be-
tween performance objectives. Unfortunately, such adapted
control policies are not necessarily optimal. For instance,
adapting a general meta control policy for a quadruped robot
to run as fast as possible will often result in a suboptimal
policy for this metric.

In this work, we show that an effective representation for ob-
taining the best performance trade-offs for multi-objective
robot control is a Pareto set of control policies. We empiri-
cally show that a Pareto set cannot be effectively represented
using a single continuous policy family. Rather, a Pareto
set is composed from a set of disjoint policy families, each



Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

occupying a continuous manifold in the parameter space
and being responsible for a segment on the Pareto front in
the performance space (Figure 1).

To find such Pareto representations, we propose an efficient
algorithm to compute the Pareto set of policies. Our al-
gorithm works in two steps. In the first step, we find a
dense and high-quality set of policies on the Pareto front
using reinforcement learning strategies based on a novel
prediction-guided evolutionary learning algorithm. In each
generation, an analytical model is fitted for each policy to
predict the expected improvement along each optimization
direction. An optimization problem is then solved to select
the policies and the associated optimization directions that
are expected to best improve the quality of the Pareto. In the
second step, we conduct a Pareto analysis on the computed
Pareto-optimal policies to identify different policy families
and to compute a continuous representation for each of these
policy families.

In order to benchmark our proposed algorithm, we design a
set of multi-objective robot control problems with a contin-
uous action space. The performance of each policy can be
evaluated using a physics-based simulation system (Todorov
et al., 2012). Our experiments demonstrate that the proposed
algorithm can efficiently find a significantly higher-quality
set of Pareto-optimal policies than existing methods. More-
over, based on these policies it can reconstruct continuous
policy families that span the whole Pareto front.

2. Background
2.1. Multi-Objective Markov Decision Process

A multi-objective control problem can be formulated as a
multi-objective Markov Decision Process (MOMDP), which
is defined by the tuple 〈S,A,P,R,γ,D〉 with state space
S, action space A, state transition probability P(s′ | s, a),
vector of reward functions R = [r1, ..., rm]> with ri :
S×A → R, vector of discount factors γ = [γ1, ..., γm]> ∈
[0, 1]m, initial state distribution D, and the number of objec-
tives m.

In MOMDPs, a policy πθ : S → A is associated with a
vector of expected returns Jπ = [Jπ1 , ..., J

π
m]T , where

Jπi = E

[
T∑
t=0

γtiri(st, at) | s0 ∼ D, at ∼ πθ(st)

]
.

The state st+1 is reached from state st by action at, and T
is the horizon. We use π for πθ for brevity.

2.2. Multi-Objective Optimization

A multi-objective optimization problem is formulated as:

max
π

F(π) = max
π

[f1(π), f2(π), ..., fm(π)],

f1

f 2
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Figure 2. (a) Hypervolume metric in 2-objective space is the area
(shaded) dominated by the Pareto front approximation and domi-
nating the reference point. (b) Sparsity metric in 2-objective space
measures the average square distance between consecutive points
in Pareto approximation. In this case, S = 1

3
(d20 + d21 + d22).

where m is the number of objectives, π is the policy, and in
our problem fi(π) = Jπi .

In multi-objective optimization problems, no single optimal
policy exists that maximizes all the objectives. Instead a set
of non-dominated solutions called the Pareto set is desired:

Definition 2.1 (Pareto optimality) We say policy π domi-
nates policy π′ if F (π) ≥ F (π′) and F (π) 6= F (π′). A
policy π is Pareto optimal if and only if it is not dominated
by any other policies. The set of all such policies is called
the Pareto set, and the image of the Pareto set in the objec-
tive space is called the Pareto front.

Since the true (optimal) Pareto set is usually impossible
to obtain in complex problems, the goal of multi-objective
optimization is to find the set of solutions that best approx-
imates the optimal Pareto set. To measure the quality of
an approximated Pareto front, two factors are usually con-
sidered (Riquelme et al., 2015): the convergence towards
the true Pareto front and the uniformity of the solution dis-
tribution, which are best measured by hypervolume metric
(Zitzler & Thiele, 1999) (illustrated in Figure 2(a)):

Definition 2.2 (Hypervolume metric) Let P be a Pareto
front approximation in an m-dimensional objective space
and r ∈ Rm be the reference point. Then the hypervolume
metricH(P ) is

H(P ) =

∫
Rm

1H(P )(z)dz, (1)

where H(P ) = {z ∈ Z | ∃1 ≤ i ≤ |P | : r � z � P (i)}.
P (i) is the i-th solution in P , � is the relation operator of
objective dominance, and 1H(P ) is a Dirac delta function
that equals 1 if z ∈ H(P ) and 0 otherwise.

A dense policy set is always preferred for better Pareto
approximation. Therefore, a sparsity metric is also defined
to measure that property (illustrated in Figure 2(b)):
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Figure 3. Overview of the algorithm. Warm-up stage: optimize n initial policies with different weights. Evolutionary stage: build an
improvement prediction model for each policy and solve a prediction-guided optimization to select n best policy-weight pairs to be
processed. The resulting polices are used to update the population and the prediction models. Pareto analysis stage: identify different
policy families and construct a continuous Pareto representation.

Definition 2.3 (Sparsity metric) Let P be a Pareto front
approximation in an m-dimensional objective space. Then
the Sparsity metric S(P ) is

S(P ) =
1

|P | − 1

m∑
j=1

|P |−1∑
i=1

(P̃j(i)− P̃j(i+ 1))2, (2)

where P̃j is the sorted list for the j-th objective values in P ,
and P̃j(i) is the i-th value in this sorted list.

In a word, a desired Pareto set approximation is expected to
have high hypervolume metric and low sparsity metric.

3. Prediction-Guided MORL
In this section, we propose our main contributions: a
prediction-guided evolutionary learning algorithm for multi-
objective control problems, and a Pareto analysis tool to
construct a continuous Pareto representation. An overview
of the algorithm is provided in Section 3.1, and the details
of our main contributions are described in Sections 3.2-3.5.

3.1. Overview

As shown in Figure 3 and Algorithm 1, we propose an
efficient algorithm to compute the Pareto set of policies.
Our algorithm starts from a warm-up stage. In this stage,
n policies are randomly initialized, and each of them is
optimized by multi-objective policy gradient (MOPG) (Al-
gorithm 2 and Section 3.2) with one of n evenly distributed
non-negative weights {ωi} (

∑
j ωi,j = 1, 1 ≤ i ≤ n) for a

specified number of iterations. The resulting policies form
the first generation of the policy population. The warm-up
stage is crucial for the whole algorithm to get the initial poli-
cies out of the low-performance region, where the learning
process is usually highly noisy and unpredictable.

Next, the algorithm proceeds with the evolutionary stage.
In each generation, an analytical model for each policy in

the population is learned from past reinforcement learning
data to predict the expected improvement along each op-
timization weight (Section 3.3). This prediction model is
then used to guide a selection optimization algorithm to
select n policy-weight pairs (we call RL tasks), which are
expected to improve the quality of the Pareto set the most
(Section 3.4). Finally, the selected tasks are optimized by
multi-objective policy gradient algorithms for a fixed num-
ber of iterations in parallel to produce the new offspring
policies, which are used to update the policy population.
For the population update, we adopt the performance buffer
strategy (Schulz et al., 2018) to maintain the performance
and diversity of the solutions. The evolutionary stage termi-
nates when reaching the maximum number of generations.
Through the whole evolutionary stage, an external Pareto
archive is maintained to store all non-dominated intermedi-
ate policies and output as the approximated Pareto set when
the evolutionary stage ends.

Once a discrete set of Pareto policies has been found, the al-
gorithm conducts a Pareto analysis on the computed policies
to identify different policy families, and then a continuous
representation of the Pareto set is extracted by intra-family
interpolation (Section 3.5).

3.2. Multi-Objective Policy Gradient

Given a policy πθ and a weight vector ω(
∑
i ωi = 1), our

multi-objective policy gradient worker aims to optimize the
policy to maximize the weighted-sum reward J (θ,ω):

J (θ,ω) = ω>F(π) =

m∑
i=1

ωifi(π) =

m∑
i=1

ωiJ
π
i .

With our evolutionary learning algorithm, a policy will be
selected to be optimized with different weights during the
whole learning process. It is inefficient to simply modify
the environment to return a scalar weighted-sum reward and
optimize the policy by a single-objective policy gradient
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Algorithm 1 Prediction-Guided MORL Algorithm
Input: #parallel tasks n, #warm-up iterations mw, #task
iterations mt, #generations M .
Initialize population P , external pareto archive EP, and
RL history recordR.
B Warm-up Stage
Generate task set T = {(πi,ωi)}ni=1 by random initial
policies and evenly distributed weight vectors.
P ′ ←MOPG(T ,mw,R) (Section 3.2)
Update P and EP with P ′.
B Evolutionary Stage
for generation← 1, 2, ...,M do

Fit improvement prediction models {∆i} for each pol-
icy in P from data inR. (Section 3.3)
T ←TaskSelection(n,P, {∆i}, EP) (Section 3.4)
P ′ ←MOPG(T ,mt,R) (Section 3.2)
Update P and EP with P ′.

end for
B Pareto Analysis Stage
Compute families in EP and construct a continuous Pareto
representation. (Section 3.5)
Output: The continuous Pareto representation.

algorithm. With this naive approach, the value network
trained with previous weights would be invalid for the new
weight and would need to be trained from scratch. Therefore,
we improve the single-objective policy gradient algorithm
by extending the value function to be vectorized, which
shares a similar strategy as applied in multi-objective Q-
learning (Yang et al., 2019).

Specifically, the vectorized value function V π(s) maps a
state s to the vector of expected returns under the current pol-
icy π. The parameters of the value function are updated by
a squared-error loss ‖V π(s)− V̂ (s)‖2, where V̂ (s) is the
target value. With this extension, the value function trained
in the previous learning process can be directly adapted to
optimize the same policy with the new weights.

To update the policy, the policy gradient is extended to be:

∇θJ (θ,ω) =

m∑
i=1

ωi∇θJi(θ)

= E

[
T∑
t=0

ω>Aπ(st, at)∇θ log πθ(at|st)

]

= E

[
T∑
t=0

Aπω(st, at)∇θ log πθ(at|st)

]
, (3)

where Aπ(st, at) is the vectorized advantage function. In
our extension, the new advantage function Aπω(st, at) is
simply represented as a weighted-sum scalarization of the
advantage functions for individual objectives. Please see
Appendix A.1 for more details.

Algorithm 2 MOPG
Input: task set T , #iterations m, RL history recordR.
Initialize offspring population P ′.
for each task (πi,ωi) ∈ T do

Run multi-objective policy gradient for task (πi, ωi)
for m iterations by Eq. 3.
Collect the result policy π′i in P ′.
Store (F(πi),F(π′i),ωi) inR.

end for
Output: Offspring population P ′.

Such value network and policy gradient extension can be
easily applied to most existing policy gradient methods. In
our implementation, we choose to adapt the Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017) into our
multi-objective weighted-sum version, where the clipped
surrogate objective is applied to update the policy parame-
ters, and the Generalized Advantage Estimation (Schulman
et al., 2015) is used to compute the advantage function and
the target values.

3.3. Policy Improvement Prediction Model

In this section, we present our prediction model for policy
improvement. Given a policy π and a weight ω, the predic-
tion model aims to predict the improvement of the objectives
after applying the policy gradient on the policy π with the
weight ω for mt iterations. However it is challenging due
to the small amount of reinforcement learning history data
we can collect during the learning process. Therefore, a
concise analytical model with few parameters needs to be
considered.

We propose a monotonic hyperbolic model based on an intu-
itive observation that the more weight put on one objective,
the better that objective can be optimized. Formally speak-
ing, if we run multi-objective policy gradient for a policy
π with objectives F(π) = [f1(π), f2(π), ..., fm(π)] with
weights ω1 and ω2 separately (where ω1,1 > ω2,1), the re-
sulting policies π1 and π2 should satisfy the monotonic prop-
erty that ∆f1(π1) = f1(π1)− f1(π) ≥ f1(π2)− f1(π) =
∆f1(π2). Furthermore, the improvement function should
be bounded on two sides. Based on these observations, we
construct the following four-parameter hyperbolic model
∆i
j(ωj) for each policy πi and each objective fj :

∆i
j(ωj) = A · e

a(ωj−b) − 1

ea(ωj−b) + 1
+ c. (4)

The function is illustrated in Figure 3 (middle left), where
ξ = {A, a, b, c} are the four parameters that need to be de-
termined for each model. In order to fit the parameters, we
record the objective improvements of reinforcement learn-
ing every mt iterations in a record data structure R. Each
entry in R is a triplet (F(π),F(π′),ω), where F(π) and
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F(π′) are the objectives for the policy before and after being
optimized by reinforcement learning for mt iterations, and
ω is the optimizing weight. As shown in Figure 3, R is a
directed graph (precisely a directed rooted forest) storing
the full RL optimization history for each policy.

In each generation, for each policy πi, the data
{(ω,∆F)} = {(ω,F(π′) − F(π))} in the neighborhood
of the policy πi (i.e., ‖F(π)− F(πi)‖ < δ‖F(πi)‖) is col-
lected, and a nonlinear least-square regression is applied to
fit the parameters of the hyperbolic model.

3.4. Prediction-Guided Optimization for Task Selection

Taking into account the hypervolume (Eq. 1) and sparsity
(Eq. 2) metrics, we propose a prediction-guided algorithm
for task selection from first principles.

In each generation, our algorithm aims to select the most
important tasks (pairs of policy and weight) that can best im-
prove the Pareto metrics. Specifically, the algorithm needs
to select n tasks Ti to be processed by multi-objective policy
gradient for mt iterations. Here each task Ti is composed
by a pair of policy πi from current population P and an
optimization weight ωi. The selected tasks seek to maxi-
mize a weighted mixture metricH(F (EP∗))+αS(F (EP∗))
(α < 0 for minimizing the sparsity metric), where EP∗ is
the new Pareto set after inserting the offspring policies from
those tasks. Guided by the prediction models trained for
each policy, we can predict the expected objectives of the
new offspring policy for each task as F(πi) + ∆i(ωi), and
can formulate this optimization problem as:

max
T={(πi,ωi)}ni=1

Q(EP, T ) = H(P ) + αS(P ) (5)

with P = F(EP∗)

= Pareto(F(EP) ∪ {F(πi) + ∆i(ωi)}),

where EP is the current Pareto archive, and Pareto is the
function computing the Pareto front from a set of objectives.

The optimization problem in Eq. 5 is a mixed-integer pro-
gramming problem, which is difficult to solve directly.
Therefore, we approximate it by discretizing the continuous
weight to K candidate sample weights (Figure 3 middle
left) and instead solve a knapsack problem: given K × |P|
candidate points in the objective space, we want to select
n of them to maximize the mixture metric after inserting
them into the current Pareto archive EP. Although in the two
objective case, it can be solved by dynamic programming in
polynomial time complexity, exactly solving the knapsack
problem in general is an NP-hard problem. Therefore, in
order to improve the generalizability of the algorithm, we
adopt a greedy algorithm (Algorithm 3). Our greedy algo-
rithm maintains a virtual policy set EP∗ for the predicted
Pareto archive. It then iteratively selects the task that best

Algorithm 3 Prediction-Guided Task Selection
Input: #tasks n, population P , improvement prediction
models {∆i}, Pareto archive EP.
Initialize task set T and virtual Pareto archive EP∗ = EP.
for i← 1, 2, ..., n do

Initialize task Ti ← None
for each πi ∈ P and ω ∈ candidate weights do

if (πi,ω) has not been selected and
Q(EP∗, (πi,ω)) > Q(EP∗, Ti) then

Ti ← (πi,ω)
end if

end for
Append task Ti into T .
Update EP∗ by inserting the predicted offspring of Ti.

end for
Output: Selected task set T .

improves the Pareto metric of EP∗ and then updates EP∗ by
inserting the predicted offspring policy of the selected task.

3.5. Continuous Pareto Representation

Once a set of Pareto optimal policies is computed from the
evolutionary stage, we conduct a Pareto analysis to analyze
the structure of policy parameters on the Pareto front.

Since the deep neural network policies are not linearly co-
related, we use t-SNE (Maaten & Hinton, 2008), which is
a standard nonlinear dimensionality reduction method, to
embed the high dimensional policy parameter space into
a lower dimensional space for better visualization. In our
case, we found mapping to two dimensional space to work
well.

For the purpose of dimensionality reduction, there are also
other available methods (e.g., LLE, PCA, Isomap). We
choose t-SNE due to its better visualization effect. We
provide a comparison with other dimensionality reduction
methods in Appendix E.5.

Once the embedding is generated, we use k-means to cluster
the reduced policies into several families as illustrated in
Figure 3 (right). As expected, the whole Pareto-optimal
set is composed from several disjoint policy families, and
each family is responsible for a continuous segment on the
Pareto front. A continuous Pareto representation is then
constructed by linearly interpolating the policies inside the
same family. For any target objectives on the continuous
Pareto front approximation, we first identify which policy
family can cover those target objectives and then linearly in-
terpolate the parameters of the nearby policies. Although the
deep neural networks are not linearly co-related, we surpris-
ingly find that by computing a dense Pareto approximation
set and conducting the Pareto analysis, such intra-family
interpolation works successfully, which is demonstrated by
the results in Section 4.3.2.
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4. Experiments
4.1. Benchmark Problems

In order to benchmark our proposed algorithm, we design
seven multi-objective RL environments with continuous ac-
tion space based on Mujoco (Todorov et al., 2012). Our
benchmark problems include six two-objective environ-
ments and one three-objective environment:

HalfCheetah-v2: Two objectives: forward speed, energy
efficiency (S ⊆ R17, A ⊆ R6).

Hopper-v2: Two objectives: forward speed, jumping height
(S ⊆ R11, A ⊆ R3).

Swimmer-v2: Two objectives: forward speed, energy effi-
ciency (S ⊆ R8, A ⊆ R2).

Ant-v2: Two objectives: x-axis speed, y-axis speed (S ⊆
R27, A ⊆ R8).

Walker2d-v2: Two objectives: forward speed, energy effi-
ciency (S ⊆ R17, A ⊆ R6).

Humanoid-v2: Two objectives: forward speed, energy effi-
ciency (S ⊆ R376, A ⊆ R17).

Hopper-v3: Three objectives: forward speed, jumping
height, energy efficiency (S ⊆ R11, A ⊆ R3).

The detailed description of the environment designs can be
found in Appendix C.

4.2. Experiment Setup

We implement our prediction-guided evolutionary learning
algorithm as described in Section 3, and implement five
baseline algorithms for comparison. 1

RA: The Radial Algorithm assigns a set of weights and runs
reinforcement learning to optimize the policies for each
weight separately. (Parisi et al., 2014)

PFA: In the evolutionary stage, we gradually fine tune the
weight of the RL to cover the whole Pareto front, which is
an adaptation of original PFA algorithm (Parisi et al., 2014)
to DRL setting.

MOEA/D: Multi-Objective Evolutionary Algorithm based
on Decomposition (Zhang & Li, 2007) decomposes the
problem into subproblems by different weights and solves
them in a collaborative way.

RANDOM: A random selection strategy is designed to
uniformly sample RL task in each generation.

META: A meta-learning based MORL method (Chen et al.,
2018) trains a meta policy and then adapts the meta policy

1The code can be found at https://github.com/mit-
gfx/PGMORL
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Figure 4. The learning curves of our algorithm and baseline
algorithms on Walker2d-v2. The x-axis is the generation, the y-
axis is the metric and the shadow area is the standard deviation. The
Hypervolume at generation 0 is measured after the warm-up stage.
The learning curve of META is not plotted as its metrics can only
be measured during the final adaptation stage. (a) Hypervolume
metric (higher is better). (b) Sparsity metric (lower is better).

to the policies for different preferences in a few iterations.

To fairly compare the baseline algorithms to ours, we im-
plement the first four baselines in a common framework
with our proposed algorithm and apply the same population
strategy and external Pareto archive to them. For the META,
our implementation is based on the codebase (Deleu, 2018)
which implements Model-Agnostic Meta-Learning (Finn
et al., 2017) and generates the Pareto approximation by
adapting the meta-policy to N uniformly sampled weights
(we set N as a large number compared to the number of so-
lutions in other methods). Furthermore, we set all the shared
hyperparameters to be the same and run all algorithms with
same amount of simulation steps. More details about the
experiment setup are described in Appendix D.1.

4.3. Results

We test the performance of our algorithm and all the base-
lines on the proposed benchmark problems. The training
details and parameters are reported in Appendix D.2. We
provide more visual results in the supplementary video. 2

4.3.1. PARETO QUALITY COMPARISON

We first use the hypervolume metric (Eq. 1) and the sparsity
metric (Eq. 2) to compare the quality of the computed Pareto
set approximations. We run each algorithm on each problem
for six times and report the average metrics in Table 1.
The training curves on Walker2d-v2 problem are shown in
Figure 4. We provide the learning curve and Pareto front
comparison results on other problems in Appendix E.1.

The results in Table 1 demonstrate that our proposed al-
gorithm outperforms all the baselines on most benchmark

2https://people.csail.mit.edu/jiex/papers/PGMORL/video.mp4

https://github.com/mit-gfx/PGMORL
https://github.com/mit-gfx/PGMORL
https://people.csail.mit.edu/jiex/papers/PGMORL/video.mp4
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Table 1. Evaluation of our algorithm and baseline algorithms on the proposed benchmark problems. We run all algorithms on each
problem for 6 runs and report the average Hypervolume (Hv) and Sparsity (Sp) metrics. Bold number is the best in each row.

EXAMPLE METRIC OURS RA PFA MOEA/D RANDOM META

HALFCHEETAH-V2 HV (×106 ) 5.77 5.66 5.75 5.61 5.69 5.18

SP (×103 ) 0.44 15.87 3.81 16.96 1.09 2.13

HOPPER-V2 HV (×107 ) 2.02 1.96 1.90 2.03 1.88 1.25

SP (×104 ) 0.50 5.99 3.96 2.73 1.20 4.84

SWIMMER-V2 HV (×104 ) 2.57 2.33 2.35 2.42 2.38 1.23

SP (×101 ) 0.99 4.43 2.49 5.64 1.94 2.44

ANT-V2 HV (×106 ) 6.35 5.98 6.23 6.28 5.54 2.40

SP (×104 ) 0.37 5.50 1.56 1.97 1.13 1.56

WALKER2D-V2 HV (×106 ) 4.82 4.15 4.16 4.44 4.11 2.10

SP (×104 ) 0.04 0.74 0.37 1.28 0.07 2.10

HUMANOID-V2 HV (×107 ) 4.64 3.53 3.70 4.65 3.21 -

SP (×104 ) 0.19 4.50 0.38 3.82 0.42 -

HOPPER-V3 HV (×1010 ) 3.74 3.50 - 3.64 3.36 2.15

SP (×103 ) 0.03 0.61 - 0.58 0.27 12.48

problems in both metrics. The training curves show that our
prediction-guided algorithm is able to select the important
reinforcement learning tasks to improve the Pareto quality
much more efficiently than the baseline methods.

RA archives high-performance solutions in some regions on
the Pareto but the solutions are spread sparsely in the perfor-
mance space because RA assigns all computing resources
into optimizing for those pre-selected weights.

PFA generates denser Pareto approximations than RA be-
cause it finetunes the optimization weights to cover the
whole weight range. However, because it blindly changes a
weight to its neighboring weight, a good policy is unable to
transfer its knowledge to wider range of weights. Therefore,
it can only recover some pieces of the Pareto front. In our
algorithm, a policy can be optimized along the whole Pareto
front as long as it can improve the Pareto quality. More-
over, PFA is hard to extend to the three-objective case as the
sequence of weights in three dimension is undefined.

MOEA/D is the most competitive baseline on hypervolume
metric as it periodically shares the better solutions across
subproblems. However, it also suffers from high sparsity.

RANDOM computes the densest Pareto approximation in
all baselines as it distributes the RL tasks evenly onto every
weight and policy. However, the random task selection strat-
egy leads to the low-performance of the computed Pareto
front, which is reflected by the low hypervolume metric.

META computes a compromise policy family that can per-
form well for every preference but not achieve the optimal
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Figure 5. Pareto analysis for Walker2d-v2 problem. (Left) The
policy families identified by t-SNE and k-means. (Right) Visual-
ization of the families in objective space. The curve going through
each family is the continuous Pareto approximation.

control. In contrast, the multi-family representation in our
method allows a much better Pareto set approximation. We
discuss it more in Section 4.3.3. The META results on
Humanoid-v2 are not reported, since in our experiments,
META is not able to generate a Pareto front in the first
quadrant.

In summary, none of the baseline algorithms distribute the
computing resource to the RL tasks that best improve the
Pareto quality. In contrast, by using the policy improvement
prediction model, our algorithm is able to identify which
regions on the Pareto are already near optimal and which
regions can still be improved. Therefore the best tasks
can be selected and a high-quality Pareto can be generated
efficiently and effectively.
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Figure 6. Pareto front comparison on Walker2d-v2 problem.
(a) META v.s. Ours. The multi-family representation in our
method helps achieve better control for different preferences. (b)
MOEA/D v.s. Ours. Our algorithm is unable to recover the Pareto
on the bottom right corner due to the long-term local minima
problem.

4.3.2. PARETO ANALYSIS RESULTS

For each Pareto set solution computed by our evolution-
ary learning algorithm, we conduct the Pareto set analysis
described in Section 3.5 to identify different families in
the solution set. The family identification for Walker2d-v2
problem is illustrated in Figure 5. For Walker2d-v2, the
whole Pareto set is split into four families in the parameter
space. The Pareto front corresponding to each policy family
comprise a continuous segment in the performance space.

We further construct a continuous Pareto representation for
each family as described in Section 3.5. The constructed
continuous Pareto front is shown in Figure 5 (right). To test
the accuracy of our continuous representation, we sample
points on the continuous Pareto front, and evaluate the rela-
tive error between the desired objectives and the objectives
of the interpolated policy. The relative errors on most prob-
lems are smaller than 1%. We further evaluate the relative
error of interpolating the policies from different families and
validate that the different families are disjoint in the param-
eter space. The detailed Pareto analysis and interpolation
results are reported in Appendix E.2. We also demonstrate
in the supplementary video that the policies in different fam-
ilies show different behaviors (e.g., gait patterns), and such
different behaviors help achieve the optimal control under
the different objective preferences.

For the purpose of dimensionality reduction, there are also
other available methods (e.g., LLE, PCA, Isomap). We
choose t-SNE due to its much clearer distinguishing effect.
Furthermore, in our experiments, t-SNE shows its robust-
ness to the parameters. We provide a discussion of param-
eters and comparison with other dimensionality reduction
methods in Appendix E.4 and E.5.

4.3.3. META POLICY OR MULTI-FAMILY?

By comparing META and our algorithm on Walker2d-v2
(Figure 6(a)), we empirically show that a typical Pareto set is
composed from a set of disjoint policy families. Therefore,
it is natural to compare this representation to meta policy.
Meta policy method provides generalizability and represents
the Pareto solutions by a single policy family. However, it
sacrifices the optimality of the control. On the contrary,
the multi-family representation can help achieve optimal
control, but a hard switch between policy families is required
while changing the preference on the boundary of each
family.

4.3.4. FAILURE CASE

As shown in Figure 6(b), in Walker2d-v2, although our
algorithm can generate a much denser and higher-quality
Pareto set than MOEA/D, we are unable to recover the
bottom right corner of the Pareto front.

This problem is caused by the fact that in order to reach
the bottom right corner of the Pareto front, the policy can
be trapped in local minima for an extended time before
moving towards a better solution. We call this the long-
term local minima problem. Furthermore, as our algorithm
predicts potential improvements based on the RL history
data, it can fail to predict potential improvements for such
policies. This is, indeed, a trade-off in our algorithm design:
spending more time on the local minima area in order to
reach better performance, or spending time on optimizing
the other regions of the Pareto front.

5. Related Work
5.1. Multi-Objective Reinforcement Learning

Most of the previous MORL work can be classified into
three categories. Single-policy methods convert the multi-
objective problem into a single-objective problem (Gábor
et al., 1998; Mannor & Shimkin, 2002) using a scalarization
function. The main drawback of these methods is that the
preference weights must be set in advance. Multi-policy
methods compute a set of policies to approximate the real
Pareto-optimal set (Parisi et al., 2014; Natarajan & Tade-
palli, 2005; Li et al., 2019). The main bottleneck of these
methods is the high computational requirement. This pre-
vents these methods from finding dense Pareto solutions
for complex control problems. Our work falls into this
category but resolves this limitation by dynamically allo-
cating computing resource by a prediction-guided selection
optimization. Meta policy methods and single universal
policy methods either compute a meta policy and adapt it
to different preferences, or directly generate output control
conditioned on input preference weights (Chen et al., 2018;
Castelletti et al., 2011; Yang et al., 2019; Abels et al., 2019).
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Those methods share the same shortcomings as the meta
policy methods as discussed in Section 4.3.3. Finally, most
methods in this class still only work for problems with dis-
crete action space and simple mechanisms (e.g., deep sea
treasure environment).

5.2. Multi-Objective Evolutionary Algorithms

Previous work in MOEA uses various evolutionary algo-
rithms to find the Pareto set by genetic operations such as
mutation and crossover (Deb, 2011). However, such black-
box optimization methods are highly inefficient in finding
optimal solutions especially when the parameter space is
extremely large (e.g., thousands of dimensions for a neural-
network). Thus, we replace the evolutionary algorithms
by reinforcement learning but borrow the ideas from this
stream of work to evolve the Pareto set. For example, we de-
compose the multi-objective optimization problem into sev-
eral single-objective sub-problems by weighted-sum scalar-
ization, which has been previously proposed by MOEA/D
(Zhang & Li, 2007). Besides, we use the performance buffer
strategy (Schulz et al., 2018) to maintain a large amount of
diverse and high-quality population as optimization candi-
dates in next generation, which is also similar to NGSA-II
(Deb et al., 2002) that performs non-dominated sort and
crowding sort to compute better populations.

6. Conclusion and Discussion
In this work, we show that an effective representation for ob-
taining the best performance trade-offs for multi-objective
robot control is a Pareto set, which is composed from dif-
ferent policy families. We present an efficient algorithm to
compute such Pareto representations. A prediction-guided
evolutionary learning algorithm is first employed to find
a high-quality set of policies on the Pareto set. Then we
conduct a Pareto analysis on the computed Pareto-optimal
policies to construct a continuous Pareto representation. Fur-
thermore, we design a set of multi-objective RL environ-
ments with continuous action space, and conduct extensive
experiments to validate the effectiveness of our algorithm.

There are several directions which can be explored in the
future. First, we believe that the learning efficiency could be
further improved by sharing the sampled trajectories through
the whole learning process. Second, it is desired to develop
a more robust model to solve the long-term local minima
problem. Finally, it is worthwhile to apply this method
to solve multi-objective control problems for real-world
robots.
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