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Fig. 1. We propose a method that can generate soft segments, i.e. layers that represent the semantically meaningful regions as well as the soft transitions
between them, automatically by fusing high-level and low-level image features in a single graph structure. The semantic soft segments, visualized by assigning
each segment a solid color, can be used as masks for targeted image editing tasks, or selected layers can be used for compositing after layer color estimation.
Original images are from [Lin et al. 2014] (top-left, bottom-right), by Death to the Stock Photo (top-right) and by Y. Aksoy (bottom-left).

Accurate representation of soft transitions between image regions is essen-
tial for high-quality image editing and compositing. Current techniques
for generating such representations depend heavily on interaction by a
skilled visual artist, as creating such accurate object selections is a tedious
task. In this work, we introduce semantic soft segments, a set of layers that
correspond to semantically meaningful regions in an image with accurate
soft transitions between different objects. We approach this problem from
a spectral segmentation angle and propose a graph structure that embeds
texture and color features from the image as well as higher-level semantic
information generated by a neural network. The soft segments are generated
via eigendecomposition of the carefully constructed Laplacian matrix fully
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automatically. We demonstrate that otherwise complex image editing tasks
can be done with little effort using semantic soft segments.
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1 INTRODUCTION
Selection and compositing are at the core of the image editing pro-
cess. For instance, local adjustments often start with a selection,
and combining elements from different images is a powerful way
to produce new content. But creating an accurate selection is a
tedious task especially when fuzzy boundaries and transparency
are involved. Tools such as the magnetic lasso and the magic wand
exist to assist users but they only exploit low-level cues and heavily
rely on the users’ skills and interpretation of the image content to
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produce good results. Furthermore, they only produce binary selec-
tions that need further refinement to account for soft boundaries
like the silhouette of a furry dog. Matting tools also exist to help
users with this task but they only add to the tedium of the entire
editing process.
An accurate pre-segmentation of the image can speed up the

editing process by providing an intermediate image representation
if it satisfies several criteria. First of all, such a segmentation should
provide distinct segments of the image, while also representing the
soft transitions between them accurately. In order to allow targeted
edits, each segment should be limited to the extent of a semantically
meaningful region in the image, e.g., it should not extend across the
boundary between two objects. Finally, the segmentation should be
done fully automatically not to add a point of interaction or require
expertise from the artist. The previous approaches for semantic
segmentation, image matting, or soft color segmentation fail to
satisfy at least one of these qualities. In this paper, we introduce
semantic soft segmentation, a fully automatic decomposition of an
input image into a set of layers that cover scene objects, separated
by soft transitions.
We approach the semantic soft segmentation problem from a

spectral decomposition angle. We combine the texture and color
information from the input image together with high-level semantic
cues that we generate using a convolutional neural network trained
for scene analysis. We design a graph structure that reveals the
semantic objects as well as the soft transitions between them in the
eigenvectors of the corresponding Laplacian matrix. We introduce a
spatially varying model of layer sparsity that generates high-quality
layers from the eigenvectors that can be utilized for image editing.

We demonstrate that our algorithm successfully decomposes im-
ages into a small number of layers that compactly and accurately
represent the scene objects as shown in Figure 1. We later show that
our algorithm can successfully process images that are challenging
for other techniques and we provide examples of editing opera-
tions such as local color adjustment or background replacement
that benefit from our layer representation.

2 RELATED WORK
Soft segmentation. Soft segmentation is decomposing an image

into two or more segments where each pixel may belong partially
to more than one segment. The layer contents change depending
on the specific goal of the corresponding method. For instance, soft
color segmentation methods extract soft layers of homogeneous
colors using global optimization [Singaraju and Vidal 2011; Tai et al.
2007; Tan et al. 2016] or per-pixel color unmixing [Aksoy et al.
2016, 2017b]. While soft color segments are shown to be useful for
several image editing applications such as image recoloring, their
content typically does not respect object boundaries, not allowing
targeted edits. To generate spatially connected soft segments, Sin-
garaju and Vidal [2011] start from a set of user-defined regions
and solve two-layer soft segmentation problems multiple times to
generate multiple layers. Levin et al. [2008b], on the other hand,
propose spectral matting, estimating a set of spatially connected soft
segments automatically via spectral decomposition. Both Singaraju
and Vidal [2011] and Levin et al. [2008b] construct their algorithms
around the matting Laplacian [Levin et al. 2008a], which provides a

powerful representation for local soft transitions in the image. We
also make use of the matting Laplacian and spectral decomposition,
following ideas from spectral matting. However, unlike previous
work, we construct a graph that fuses higher-level information
coming from a deep network with the local texture information in
order to generate soft segments that correspond to semantically
meaningful regions in the image.

Natural image matting. Natural image matting is the estimation
of per-pixel opacities of a user-defined foreground region. The typi-
cal input to natural matting algorithms is a trimap, which defines the
opaque foreground, the transparent background, and the unknown-
opacity regions. While there are different approaches to this prob-
lem all of which make use of the color characteristics of the defined
foreground and background regions, the most closely-related ap-
proaches to ours are categorized as affinity-based methods. The
affinity-based methods, such as closed-form matting [Levin et al.
2008a], KNN matting [Chen et al. 2013], and information-flow mat-
ting [Aksoy et al. 2017a], define inter-pixel affinities to construct a
graph that reflects the opacity transitions in the image. In contrary to
natural image matting methods, we rely on automatically-generated
semantic features in defining our soft segments instead of a trimap,
and generate multiple soft segments rather than foreground seg-
mentation. Although they appear similar, natural matting and soft
segmentation have fundamental differences. Natural matting, with a
trimap as input, becomes the problem of foreground and background
color modeling, may it be through selection of color samples or prop-
agation of color information. Meanwhile, soft segmentation focuses
on detecting soft transitions that best serve the target application,
in our case the ones corresponding to semantic boundaries.

Targeted edit propagation. Several image editing methods rely on
user-defined sparse edits on the image and propagate them to the
whole image. ScribbleBoost [Li et al. 2008] proposed a pipelinewhere
they classify the objects specified by the user scribbles to allow edits
targeting specific object classes in the image, and DeepProp [Endo
et al. 2016] utilized a deep network to propagate class-dependent
color edits. Eynard et al. [2014] constructs a graph and, parallel to
our method, analyze the eigendecomposition of the corresponding
Laplacian matrix to create coherent recoloring results. An and Pel-
lacini [2008] and Chen et al. [2012] also define inter-pixel affinities
and make use of the properties of the Laplacian matrices to solve for
plausible propagations of the user-defined edits. While our results
can also be used for targeted edits, rather than using edits defined
a priori, we directly decompose the image into soft segments and
let the artist use them as an intermediate image representation in
various scenarios and using external image editing tools.

Semantic segmentation. Semantic segmentation has improved sig-
nificantly with the introduction of deep neural networks. While
a detailed report on semantic segmentation is beyond our scope,
state-of-the-art in semantic segmentation include works on scene
parsing by Zhao et al. [2017], instance segmentation methods by
He et al. [2017] and Fathi et al. [2017], and work by Bertasius et
al. [2016] which enhances semantic segmentation with color bound-
ary cues. We also make use of a deep network for semantic features,
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Fig. 2. For an input image, we generate per-pixel hyperdimensional semantic feature vectors and define a graph using the texture and semantic information.
The graph is constructed such that the corresponding Laplacian matrix and its eigenvectors reveal the semantic objects and the soft transitions between them.
We use the eigenvectors to create a set of preliminary soft segments and combine them to get semantically meaningful segments. Finally, we refine the soft
segments so that they can be used for targeted image editing tasks. Image from [Lin et al. 2014], background in the editing result by Flickr user rumpleteaser.

but our soft segmentation method is class-agnostic, i.e. we are inter-
ested in an accurate segmentation of the image respecting semantic
boundaries, but we do not aim to do classification or detection of a
selected set of classes. Others also make use of class-agnostic seman-
tic information to improve performance in video deblurring [Ren
et al. 2017] or cinemagraph generation [Oh et al. 2017].

3 METHOD
We seek to automatically generate a soft segmentation of the input
image, that is, a decomposition into layers that represent the objects
in the scene including transparency and soft transitions when they
exist. Each pixel of each layer is augmented with an opacity value
α ∈ [0, 1] with α = 0 meaning fully transparent, α = 1 fully opaque,
and in-between values indicating the degree of partial opacity. As
other studies in this domain such as [Aksoy et al. 2017b; Singaraju
and Vidal 2011], we use an additive image formation model:

(R,G,B)input =
∑
i αi (R,G,B)i (1a)∑

i αi = 1, (1b)

i.e., we express the input RGB pixels as the sum of the pixels in each
layer i weighted by its corresponding α value. We also constrain the
α values to sum up to 1 at each pixel, representing a fully opaque
input image.
Our approach uses the same formalism as spectral matting in

formulating the soft segmentation task as an eigenvector estimation
problem [Levin et al. 2008b]. The core component of this approach
is the creation of a Laplacian matrix L that represents how likely
each pair of pixels in the image is to belong to the same segment.
While spectral matting builds this matrix using only low-level local
color distributions, we describe how to augment this approach with
nonlocal cues and high-level semantic information. The original
approach also describes how to create the layers from the eigenvec-
tors of L using sparsification. We show how a relaxed version of
this original technique actually yields better results. Figure 2 shows
an overview of our approach.

3.1 Background
Spectral matting. Our approach builds upon the work of Levin

et al. [2008a; 2008b]. They first introduced the matting Laplacian
that uses local color distributions to define a matrix L that captures
the affinity between each pair of pixels in a local patch, typically
5 × 5 pixels. Using this matrix, they minimize the quadratic func-
tional αTLα subject to user-provided constraints, with α denoting
a vector made of all the α values for a layer. This formulation shows
that the eigenvectors associated to small eigenvalues of L play an
important role in the creation of high-quality mattes. Motivated by
this observation, their subsequent work on spectral matting used the
eigenvectors of L to build a soft segmentation [Levin et al. 2008b].
Each soft segment is a linear combination of the K eigenvectors
corresponding to the smallest eigenvalues of L that maximizes mat-
ting sparsity, i.e., minimizes the occurrence of partial opacity. The
segments are created by minimizing an energy function that favors
α = 0 and α = 1:

argmin
{yi }

∑
i,p

|αip |
γ + |1 − αip |

γ with: α i = Eyi (2a)

subject to:
∑
i
αip = 1, (2b)

where αip is the α value of pth pixel of the ith segment, E is a matrix
containing the K eigenvectors of L with smallest eigenvalues, yi is
the linear weights on the eigenvectors that define the soft segments,
and γ < 1 is a parameter that controls the strength of the sparsity
prior.
While spectral matting generates satisfying results when the

image contains a single well-identified object with distinct colors, it
struggles with more complex objects and scenes. Being based solely
on the matting Laplacian that considers only low-level statistics of
small patches, it is limited in its ability to identify objects. In our
work, we extend this approach to fuse semantic features in the same
Laplacian formulation and capture higher-level concepts like scene
objects and to have a broader view of the image data.
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Image and features Without color conn. Our result

Fig. 3. The color-based nonlocal affinity we include helps the decomposition
recover isolated regions such as disconnected background regions or long
extensions, as the highlights point out. Image from [Lin et al. 2014].

Affinity and Laplacian matrices. Levin et al. [2008a] formulate
their approach as a least-squares optimization problem that directly
leads to a Laplacian matrix. An alternative approach is to express
the affinity between pairs of pixels [Aksoy et al. 2017a]. Pairs with a
positive affinity are more likely to have similar values, zero-affinity
pairs are independent, and pairs with a negative affinity are likely to
have different values. In this work, we will use the affinity approach
and build the corresponding normalized Laplacian matrix using the
well-known formula:

L = D− 1
2 (D −W )D− 1

2 , (3)

whereW is a square matrix containing the affinity between all pairs
of pixels and D is the corresponding degree matrix, i.e. a diagonal
matrix with elementsW 1, 1 being a row vector of ones. As noted
by Levin et al., L may not always be a true graph Laplacian due
to the presence negative affinities, but nonetheless shares similar
properties such as being positive semidefinite.

3.2 Nonlocal Color Affinity
We define an additional low-level affinity term that represents color-
based longer-range interactions. A naive approach would be to
use larger patches in the definition of the matting Laplacian. How-
ever, this option quickly becomes impractical because it renders
the Laplacian matrix denser. Another option is to sample pixels
from a nonlocal neighborhood to insert connection while preserv-
ing some sparsity in the matrix. KNN matting [Chen et al. 2013] and
information-flow matting [Aksoy et al. 2017a] have shown good
results for medium-range interaction with such sampling. However,
this strategy faces a trade-off between sparsity and robustness: fewer
samples may miss important image features and more samples make
the computation less tractable.

We propose a guided sampling based on an oversegmentation of
the image. We generate 2500 superpixels using SLIC [Achanta et al.
2012] and estimate the affinity between each superpixel and all the
superpixels within a radius that corresponds to 20% of the image size.
The advantage of this approach is that each feature large enough to
be a superpixel is represented, sparsity remains high because we use
a single sample per superpixel, and it links possibly disconnected
regions by using a large radius, e.g. when the background is seen

Only matting Laplacian With semantic conn. Our full Laplacian

Fig. 4. The results of our entire pipeline using only the matting Laplacian (a),
matting and semantic Laplacians (b) and the two together with the sparse
color connections (c), for the image shown in Figure 5. The top row shows a
distinct color for each produced soft segment, and the bottom row shows
the extracted matte corresponding to the person. Due to the eigenvectors
that are unable to represent the semantic cut between the person and
the background, using only matting Laplacian results in the person soft
segment including large portions of the background, as highlighted. Adding
the sparse color connections provides a cleaner foreground matte.

through a hole in an object. Formally, we define the color affinity
wC
s,t between the centroids of two superpixels s and t separated by

a distance less than 20% of the image size as:

wC
s,t = (erf (ac (bc − ∥cs − ct ∥)) + 1) / 2, (4)

where cs and ct are the average colors of the superpixels of s and t
that lies in [0, 1], erf is the Gauss error function, and ac and bc are
parameters controlling how quickly the affinity degrades and the
threshold where it becomes zero. erf takes values in [−1, 1] and its
use here is mainly motivated by its sigmoidal shape. We use ac = 50
and bc = 0.05 in all our results. This affinity essentially makes sure
the regions with very similar colors stay connected in challenging
scene structures, and its effect is demonstrated in Figure 3.

3.3 High-Level Semantic Affinity
While the nonlocal color affinity adds long-range interactions to the
segmentation process, it remains a low-level feature. Our experi-
ments show that, without additional information, the segmentation
still often merges image regions of similar color that belong to dif-
ferent objects. To create segments that are confined in semantically
similar regions, we add a semantic affinity term, that is, a term that
encourages the grouping of pixels that belong to the same scene
object and discourages that of pixels from different objects. We build
upon prior work in the domain of object recognition to compute
a feature vector at each pixel that correlates with the underlying
object. We compute the feature vectors via a neural network, as
described in Section 3.5. The feature vectors are generated such that
for two pixels p and q that belong to the same object f p and f q
are similar, i.e. ∥ f p − f q ∥ ≡ 0, and for a third pixel r in a different
semantic region, f r is far away, i.e. ∥ f p − f q ∥ ≪ ∥ f p − f r ∥.

We define the semantic affinity also over superpixels. In addition
to increasing the sparsity of the linear system, the use of superpixels
also decrease the negative effect of the unreliable feature vectors
in transition regions, as apparent from their blurred appearance in
Figure 4. The superpixel edges are not directly used in the linear
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Fig. 5. The image (a) and semantic features (b) are shown with several eigenvectors corresponding to the smallest eigenvalues1 of the proposed Laplacian
matrix (c, top row) and the matting Laplacian as used in spectral matting [Levin et al. 2008b] (d, bottom row). Green represents the positive values of an
eigenvector while red shows negative. Our Laplacian matrix strongly reveals the semantic cuts in the eigenvectors while the matting Laplacian eigenvectors
extend beyond the semantic edges, as the highlighted areas show. Image from [Lin et al. 2014].

system, the connections in the graph are between superpixel cen-
troids. This information from the centroids then spreads to nearby
pixels while respecting the image edges with the matting affinity
term. With these vectors and the same oversegmentation in the pre-
vious section (§ 3.2), for each superpixel s , we associate its average
feature vector f̃ s to its centroidps . We use these vectors to define
an affinity term between each adjacent superpixels s and t :

wS
s,t = erf

(
as (bs − ∥ f̃ s − f̃ t ∥)

)
, (5)

with as and bs parameters controlling the steepness of the affinity
function and when it becomes negative. We discuss how to set them
in Section 3.5. Defining negative affinities help the graph disconnect
different objects while the positive values connect regions that
belong to the same object.

Unlike the color affinity, the semantic affinity only relates nearby
superpixels to favor the creation of connected objects. This choice of
a nonlocal color affinity together with a local semantic affinity allows
creating layers that can cover spatially disconnected regions of the
same semantically coherent region. This often applies to elements
like greenery and sky that often appear in the background, which
makes them likely to be split into several disconnected components
due to occlusions. As a result of including the local semantic affinity,
the eigenvectors of L reveal object boundaries as demonstrated in
Figure 4 and 5.

3.4 Creating the Layers
We create the layers by using the affinities described earlier in this
section to form a Laplacian matrix L. We extract the eigenvectors
from this matrix and use a two-step sparsification process to create
the layers from these eigenvectors.

Forming the Laplacian matrix. We form a Laplacian matrix L by
adding the affinity matrices together and using Equation 3:

L = D− 1
2
(
D − (WL + σSWS + σCWC )

)
D− 1

2 (6)

whereWL is the matrix containing the matting affinities,WC the
matrix containing the nonlocal color affinities (§ 3.2),WS the ma-
trix with the semantic affinities (§ 3.3), and σS and σC parameters
controlling the influence of each term, both set to be 0.01.

Constrained sparsification. We extract the eigenvectors corre-
sponding to the 100 smallest eigenvalues of L. We form an inter-
mediate set of layers using the optimization procedure by Levin et
al. [2008b] on Eq. 2 with γ = 0.8. Unlike spectral matting that uses
k-means clustering on the eigenvectors to initialize the optimiza-
tion, we use k-means clustering on the pixels represented by their
feature vectors f . This initial guess is more consistent with the
scene semantics and yields a better soft segmentation. We generate
40 layers with this approach and in practice, several of them are
all zeros, leaving 15 to 25 nontrivial layers. We further reduce the
number of layers by running the k-means algorithm with k = 5 on
these nontrivial layers represented by their average feature vector.
This approach works better than trying to directly sparsify the 100
eigenvectors into 5 layers, because such drastic reduction makes
the problem overly constrained and does not produce good-enough
results, especially in terms of matte sparsity. The initially estimated
soft segments before and after grouping are shown in Figure 7. We
have set the number of segments to 5 without loss of generalization;
while this number could be set by the user depending on the scene
structure, we have observed that it is a reasonable number for most
images. Because these 5 layers are constrained to lie within the
subspace of a limited number of eigenvectors, the achieved sparsity
is suboptimal, leaving many semi-transparent regions in the layers,
which is unlikely in common scenes. Next, we introduced a relaxed
version of the sparsity procedure to address this issue.

Relaxed sparsification. To improve the sparsity of the layers, we
relax the constraint that they are a linear combination of the eigen-
vectors. Instead of working with the coefficients yi of the linear
combination (Eq. 2), in this step, each individual α value is an un-
known. We define an energy function that promotes matte sparsity

1In fact, the eigenvector corresponding to the smallest eigenvalue is not shown here as
it is a constant vector for both matrices.
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Fig. 6. The images (a) are shown with the results before pixel-level sparsification (b) and after (c). Color-coded segments are shown with a single alpha channel
that corresponds to the foreground objects. This final step cleans spurious alpha values that occur due to the limited expressional power of the eigenvectors
while preserving the soft transitions. The bottom example also features a sparsification result that uses a constant 0.9 as sparsity parameter γ (d), while we
use spatially-varying γp which relaxes the sparsity constraint in transition regions. The effect of this can be seen in the inset, as our result (c) preserves the
soft transitions around the hair while a constant parameter (d) results in an overly sparse result. Images from [Lin et al. 2014].

Fig. 7. The input image and computed semantic features are shown with
the initially estimated soft segments with many layers (middle) and the
intermediate soft segments after grouping (right). The soft segments are
visualized by assigning each segment a solid color. Note that these results
are refined further with relaxed sparsification. Images from [Lin et al. 2014].

on the pixel-level while respecting the initial soft segment estimates
from the constrained sparsification and the image structure. We
now define our energy term by term.
The first term relaxes the subspace constraint and only ensures

that the generated layers remain close to the layers α̂ created with
the constrained sparsification procedure:

EF =
∑
ip

(
αip − α̂ip

)2
. (7)

We also relax the sum-to-one requirement (Eq. 1b) to be integrated
into the linear system as a soft constraint:

EC =
∑
p

(
1 −

∑
i
αip

)2
, (8)

where αip is the α value of the pth pixel in the ith layer. The next
term is the energy defined by the Laplacian L defining the spatial
propagation of information defined in Eq.6:

EL =
∑
i
αT
i Lα i . (9)

Finally, we formulate a sparsity term that adapts to the image con-
tent. Intuitively, partial opacities come from color transitions in the
image because in many cases, it corresponds to a transition between
two scene elements, e.g., the fuzzy transition between a teddy bear
and the background. We use this observation to build a spatially
varying sparsity energy:

ES =
∑
i,p

|αip |
γ̃p + |1 − αip |

γ̃p (10a)

with: γ̃p = min(0.9 + ∥∇cp ∥, 1), (10b)

where ∇cp is the color gradient in the image at pixel p computed
using the separable kernels of Farid and Simoncelli [2004].We design
this term such that when γ̃p = 1 on image regionswhere the gradient
is large enough, the energy profile is flat for αip ∈ [0 : 1], i.e. the
energy only acts as a penalty on values outside the valid range and
lets αip take any value between 0 and 1. In comparison, in uniform
regions where ∇cp ≈ 0, it encourages αip to be 0 or 1. These two
effects combined favor a higher level of sparsity together with the
softness of the opacity transitions. The effect of our spatially varying
sparsity energy on preserving accurate soft transitions can be seen
in Figure 6 (c,d).

Putting these terms together, we get the energy function

E = EL + ES + EF + λEC . (11)

A unit weight for each term works well except for the sum-to-one
term EC that represents the soft constraint with a higher weight
λ = 100. Without the sparsity term ES , E would be a standard least-
squares energy function that can be minimized by solving a linear
system. To handle ES , we resort to an iterative reweighted least-
squares solver that estimates a solution by solving a series of linear
systems. We describe the detail of this approach in the rest of this
section.
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We name Ni = 5 the number of layers, Np the number of pixels,
a the vector made of all α i ’s and â the vector made of all α̂ i ’s.
The dimensionality of a and â is Nip = NiNp . For clarity, we also
introduce the Nip × Nip identity matrix I. With this notation, we
rewrite EF (Eq. 7) in matrix form:

EF = (a − â)TI(a − â) (12)

We included the redundant I in this equation for a clearer transition
when deriving Eq. 17. For rewriting EC (Eq. 8), we introduce the
Ni × Nip matrix C made by concatenating Ni identity matrices
horizontally, the vector 1i made of Ni ones, and the vector 1ip made
of Nip ones:

EC = (1i − Ca)2 = aTCTCa − aTCT1i − 1Ti Ca + 1
T
i 1i (13a)

= aTCTCa − 2aT1ip + Ni , (13b)

where we used aTCT1i = 1Ti Ca, C
T1i = 1ip , and 1Ti 1i = Ni . We

then rewrite EL :

EL = aTLa (14a)

with: L =


L 0 · · · 0
0 L · · · 0
...
...
. . .

...

0 0 · · · L


. (14b)

For the sparsity term ES , we introduce the approximate energy:

ẼS =
∑
i,p

uip (αip )
2 +vip (1 − αip )

2 (15a)

with: uip = |α ′
ip |

γ̃p−2 and vip = |1 − α ′
ip |

γ̃p−2, (15b)

where α ′ is equal to the constrained sparsification result at the first
iteration and to the solution of the previous iteration later. For the
matrix reformulation, we useDu the diagonal matrix built with the
uip values, and v andDv the vector and diagonal matrix built with
the vip values:

ẼS = aTDua + (1ip − a)TDv (1ip − a) (16a)

= aT(Du +Dv )a − 2aTv + 1Tipv, (16b)

where we usedDv1ip = v and vTa = aTv.
To derive a linear system, we sum all the energy terms in their

matrix forms and write that the derivative with respect to a should
be zero at a minimum. This leads to:

(L +Du +Dv + I + λC
TC)a = v + â + λ1ip (17)

We solve this equation using preconditioned conjugate gradient
optimization [Barrett et al. 1994]. In our experiments, 20 iterations
generate results with satisfactory sparsity. Figure 6 illustrates the
benefits of our approach.
The size of the linear system is NiNp . While this is large, it re-

mains tractable because the number of soft layers Ni is set to 5
and it is close to being block-diagonal, the only coefficients outside
the diagonal coming from the sum-to-one term EC that contributes
CTC to the system. Since C is made of 5 juxtaposed Np ×Np identity
matrices, CTC is made of 25 Np × Np identity matrices in a 5 × 5
layout, i.e. it is very sparse and is easily handled by the solver.

Fig. 8. We first generate a 128-dimensional feature vector per pixel for a
given image (a). A random projection of 128 dimensions to 3 is shown in (b).
We reduce the dimensionality of the features to 3 using principle component
analysis per image (c). Before the dimensionality reduction, we edge-align
the features with guided filter. Image from [Lin et al. 2014].

3.5 Semantic Feature Vectors
We defined our semantic affinity term (§ 3.3) with feature vectors
f that are similar for pixels on the same object and dissimilar for
pixels on different objects. Such vectors can be generated using
different network architectures trained for semantic segmentation.
In our implementation, we have combined a semantic segmentation
approach with a network for metric learning. It should be noted that
we do not claim the feature generation as a contribution and we
only summarize the solution that we used in this section. A detailed
description is provided in the supplementary material.
The base network of our feature extractor is based on DeepLab-

ResNet-101 [Chen et al. 2017], but it is trained with a metric learning
approach [Hoffer and Ailon 2015] to maximize the L2 distance be-
tween the features of different objects. We combine features at
multiple stages of the network, motivated by Hariharan et al. [2015]
and Bertasius et al. [2015], essentially combining the mid-level and
high-level features together. Instead of using all the pixels of an
image while training, we generate the features for all pixels but use
only a set of randomly-sampled features to update the network. The
network minimizes the distance between the features of samples
having same ground-truth classes, and maximizes the distance oth-
erwise. Since we only use this cue, i.e. whether two pixels belong
to the same category or not, specific object category information
is not used during training. Hence, our method is a class agnostic
approach. This is suitable for our overall goal of semantic soft seg-
mentation as we aim to create soft segments that cover semantic
objects, rather than classification of the objects in an image. To
utilize more data with computational efficiency, we use a slightly
modified version of N-pair loss [Sohn 2016].

We train this network on the semantic segmentation task of the
COCO-Stuff dataset [Caesar et al. 2016]. We refine the feature map
generated by this network to be well-aligned to image edges using
the guided filter [He et al. 2013]. We then use principal component
analysis (PCA) to reduce the dimensionality to three. These pre-
processing steps are visualized in Figure 8. While the original 128-
dimensional vectors provide a good coverage of all the content we
may encounter, each image only exhibits a small portion of it and
reducing the dimensionality accordingly results in better accuracy
per dimension. Finally, we normalize the vectors to take values
in [0, 1]. This makes it easier to set parameters, especially in case of
changing feature vector definitions. For all the results we present,
we set as and bs in Eq. 5 to be 20 and 0.2, respectively.
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Input image Our features PSPNet Mask R-CNN Spectral matting Our result

Fig. 9. We show our results together with that of Zhao et al. [2017] (PSPNet), He et al. [2017] (Mask R-CNN), and spectral matting [Levin et al. 2008b]. The
segmentations are overlayed onto the grayscale version of the image for a better evaluation around segment boundaries. Notice the inaccuracies of PSPNet
and Mask R-CNN around object boundaries, and the soft segments of spectral matting extending beyond object boundaries. Images from [Lin et al. 2014].

3.6 Implementation Details
We use the sparse eigendecomposition and direct solver available
in MATLAB for our proof-of-concept implementation for the con-
strained sparsification stage of our algorithm. This step takes around
3 minutes for a 640 × 480 image. The relaxed sparsification step
uses the preconditioned conjugate gradient optimization implemen-
tation of MATLAB. Each iteration typically converges in 50 to 80
iterations and the process takes around 30 seconds. The run-time of
our algorithm grows linearly with the number of pixels.

4 EXPERIMENTAL ANALYSIS
Semantic soft segmentation, being at the intersection of semantic
segmentation, natural image matting, and soft segmentation, is chal-
lenging to evaluate numerically. Semantic segmentation datasets
provide binary labeling that is not always pixel-accurate, which
makes them ill-suited for benchmarking semantic soft segmenta-
tion. Natural image matting methods are typically evaluated on
dedicated benchmarks [Rhemann et al. 2009] and datasets [Xu et al.

2017]. These benchmarks are designed to evaluate methods that
make use of a secondary input, called trimap, which defines the
expected foreground and background, and an uncertain region. Fur-
ther, the semantic aspect of our work is beyond the scope of these
benchmarks. Soft color segmentation, on the other hand, is a prob-
lem that lacks a solid definition of ground truth. Although Aksoy et
al. [2017b] proposed several blind metrics for evaluation, they are
specifically designed for soft color segmentation and also ignores
semantic aspects. As a result, we resort to qualitative comparisons
with related methods and discuss the characteristic differences be-
tween the various approaches.

4.1 Spectral Matting and Semantic Segmentation
In Figures 9 and 10, we show our results together with that of spec-
tral matting [Levin et al. 2008b] as themost related soft segmentation
method to ours, and two state-of-the-art methods for semantic seg-
mentation: the scene parsing method by Zhao et al. [2017] (PSPNet)
and the instance segmentation method by He et al. [2017] (Mask
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Input image Our features PSPNet Mask R-CNN Spectral matting Our result

Fig. 10. We show our results together with that of Zhao et al. [2017] (PSPNet), He et al. [2017] (Mask R-CNN), and spectral matting [Levin et al. 2008b]. The
segmentations are overlayed onto the grayscale version of the image for a better evaluation around segment boundaries. Notice the inaccuracies of PSPNet
and Mask R-CNN around object boundaries, and the soft segments of spectral matting extending beyond object boundaries. Images from [Lin et al. 2014].

R-CNN). More of these comparisons are available in the supplemen-
tary material. Spectral matting generates around 20 soft segments
per image, and provides several alternative foreground mattes by
combining the soft segments to maximize an objectness score. These
mattes are not definite results but are provided to the user as options,
and showing all 20 segments would make the comparisons harder
to evaluate. Instead, we apply our soft segment grouping method
that uses the semantic features to the results of spectral matting.

The presented examples show that semantic segmentation meth-
ods, while being successful in recognizing and locating the objects
in the image, suffer from low accuracy around the edges of the
objects. While their accuracy is satisfactory for the task of the se-
mantic segmentation, errors around object edges are problematic
for image editing or compositing applications. On the other end
of the spectrum, spectral matting is able to successfully capture
most of the soft transitions around the objects. However, due to the
lack of semantic information, their segments often cover multiple
objects at once, and the alpha values are often not sparse for any
given object. In comparison, our method captures objects in their
entirety or subparts of them without grouping unrelated objects

and achieves a high accuracy at edges, including soft transitions
when appropriate.

It should be noted that it is not uncommon for our method to
represent the same object in multiple segments such as the horse
carriage in Figure 9 (2) or the background fence in Figure 9 (4).
This is mainly due to the preset number of layers, five, sometimes
exceeds the number of meaningful regions in the image. Some small
objects may be missed in the final segments despite being detected
by the semantic features, such the people in the background in
Figure 10 (5). This is due to the fact that, especially when the color
of the object is similar to the surroundings, the objects do not appear
well-defined in the eigenvectors and they end up being merged into
closeby segments. Our semantic features are not instance-aware, i.e.
the features of two different objects of the same class are similar.
This results in multiple objects being represented in the same layer
such as the cows in Figure 9 (1), the people in Figure 9 (5) or the
giraffes in Figure 10 (3). With instance-aware features, however, our
method would be capable of generating separate soft segments for
different instances of objects.
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Fig. 11. From the input image (a) and our feature vectors (b), our method generates the matte shown in (c). We show that the trimaps with different unknown
region widths, generated using the semantic segments by PSPNet [Zhao et al. 2017] (d) or Mask R-CNN [He et al. 2017] (e), fail to provide foreground and
background regions reliably, which affects the matting result generated using information-flow matting [Aksoy et al. 2017a] negatively. In the bottom example,
PSPNet trimaps are generated by selecting a single class (left) or all the classes that correspond to the object. We also provide the matting result using a
trimap generated by our result (f) which demonstrates the performance of the matting algorithm given an accurate trimap. Images from [Lin et al. 2014].

Grayscale images are especially challenging for soft segmentation
and image matting methods with the lack of color cues on which
such methods typically rely. The performance of semantic segmen-
tation methods, on the other hand, does not degrade substantially
when processing a grayscale image. Figure 10 (5) demonstrates that
our method can succesfully leverage the semantic information for
soft segmentation of a grayscale image.

4.2 Natural Image Matting
In principle, semantic soft segments can be generated by cascad-
ing semantic segmentation and natural image matting. The trimap,
defining the foreground, background, and soft transition regions,
can be generated from the semantic hard segments to be fed to the
natural matting method. Shen et al. [2016] and Qin et al. [2017]
use similar approaches for class-specific problems. We show two
examples of such scenario in Figure 11 to demonstrate the shortcom-

ings of this approach by generating trimaps using Mask R-CNN and
PSPNet results and estimating the mattes using a state-of-the-art
matting method, information-flow matting [Aksoy et al. 2017a]. A
strong assumption made by natural image matting methods is that
the provided trimap is correct, i.e. the defined foreground and back-
ground regions are used as hard constraints to guide the methods
in modeling the layer colors. Inaccuracies in the estimated semantic
boundaries, however, often fails to provide reliable trimaps even
with a large unknown-region width. This results in severe artifacts
in the matting results, as highlighted in the figure. We show that
the natural matting method succeeds given an accurate trimap,
generated using our results for demonstration.

While general natural image matting is beyond the scope of our
method, Figure 12 shows several examples where our method is
able to generate satisfactory results on images from natural image
matting datasets without requiring a trimap.
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Fig. 12. Our soft segments and the corresponding mattes for the foreground objects. Note that trimaps usually provided for natural matting were not used to
produce these results. Images from [Xu et al. 2017].

Image and features Semantic soft segments Soft color segments

Fig. 13. Semantic soft segments by the proposed method and soft color segments by Aksoy et al. [2017b] shown together for conceptual comparison. Both
methods are fully automated and only require the input image for soft segmentation. Image from [Bychkovsky et al. 2011].

4.3 Soft Color Segmentation
Soft color segmentation, a concept originally proposed by Tai et
al. [2007], decomposes the input image into soft layers of homoge-
neous colors and have been shown to be useful for image editing
and recoloring applications. As a conceptual comparison between
semantic soft segments and soft color segments, Figure 13 shows our
segments with that of unmixing-based soft color segmentation [Ak-
soy et al. 2017b]. For a more convenient qualitative comparison, we

estimated the layer colors for our soft segments using the closed-
form color estimation method [Levin et al. 2008a].
It is immediately visible that the content of soft color segments

extend beyond the object boundaries, while our results show seman-
tically meaningful objects in the same segment, regardless of their
color content. As these representations are orthogonal to each other,
they can be used in orchestration to generate targeted recoloring
results.
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Fig. 14. We show our soft segmentation results together with image editing results that were generated using per-layer operations or simple compositions to
demonstrate the use of our segmentation in targeted image editing tasks. Images from [Bychkovsky et al. 2011] (1) and by Death to the Stock Photo (2,7).

4.4 Using Semantic Soft Segments for Image Editing
We demonstrate several use cases of our soft segments for targeted
image editing and compositing in Figure 14. Figure 14(1,3,4,7) show
compositing results where we estimated the layer colors for our seg-
ments using closed-form layer color estimation [Levin et al. 2008a].
Notice the natural soft transitions between the selected foreground
layers and the novel background. The soft segments can also be
used for targeted image edits where they are used to define masks
for specific adjustment layers such as adding motion blur to the
train in (2), color grading the people and the backgrounds separately
in (5,6) and separate stylization of the hot-air balloon, sky, terrain
and the person in (8). While these edits can be done via user-drawn
masks or natural matting algorithms, our representation provides a
convenient intermediate image representation to make the targeted
edits effortless for the artist.

5 LIMITATIONS AND FUTURE WORK
While we are able to generate accurate soft segmentations of images,
in our prototype implementation our solvers are not optimized for
speed. As a result, our runtime for a 640 × 480 image lies between
3 and 4 minutes. The efficiency of our method can be optimized
in several ways, such as multi-scale solvers, but an efficient imple-
mentation of linear solvers and eigendecomposition lies beyond the
scope of our paper.

In the constrained sparsification step, we generate around 15-25
segments, which are then grouped using the feature vectors into 5.
The number of layers was set via empirical observations, and in

Fig. 15. Two failure cases are shown. Top example: In case of large regions
covering different objects with very similar colors (a) our feature vectors
(b) and segments before grouping (c) fail to identify the separate objects
in the image and result in inaccurate segmentation (d). Bottom example:
When our feature vectors fail to represent the objects, even if when the
initial layers are able to generate accurate soft transitions (c) the grouping
of the soft segments (d) may fail. Images from [Rhemann et al. 2009].

some cases, an object may be divided into several layers. While this
does not affect the applicability of our method as combining those
layers in editing is trivial, more sophisticated ways of grouping the
layers such as through recognition and classification can be devised.
Our method does not generate separate layers for different in-

stances of the same class of objects. This is due to our feature vectors,
which does not provide instance-aware semantic information. Our
soft segmentation formulation, however, is agnostic to the semantic
features. Hence, a more advanced feature generator would make it
possible to generate instance-level soft segmentation results when
combined with a better-fitting segment-grouping strategy.
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We have shown several results from natural matting datasets.
However, it should be noted that we do not aim to solve the natu-
ral matting problem in general. Natural matting is a mature field
with many specific challenges, such as generating accurate mattes
around very similarly-colored foreground and background regions,
and state-of-the-art methods depend on the color distributions of the
two regions to increase performance around such areas. As Figure 15
demonstrates, our method may fail at the initial constrained sparsifi-
cation step when the object colors are very similar, or the grouping
of soft segments may fail due to unreliable semantic feature vectors
around large transition regions.

6 CONCLUSION
We have proposed a method that generates soft segments that cor-
respond to semantically meaningful regions in the image by fusing
the high-level information from a neural network with low-level
image features fully automatically. We have shown that by care-
fully defining affinities between different regions in the image, the
soft segments with the semantic boundaries can be revealed by
spectral analysis of the constructed Laplacian matrix. The proposed
relaxed sparsification method for the soft segments can generate
accurate soft transitions while also providing a sparse set of lay-
ers. We have demonstrated that while semantic segmentation and
spectral soft segmentation methods fail to provide layers that are
accurate enough for image editing tasks, our soft segments provide
a convenient intermediate image representation that makes several
targeted image editing tasks trivial, which otherwise require the
manual labor of a skilled artist.
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