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1. Introduction

The human skin is a natural marvel of perception, capable of
robustly sensing temperature, pressure, and materials, enabling
higher-level environmental reasoning and tactile skill.[1] Creating
similarly intelligent sensorized skins for applications in soft
robotics,[2] interaction and haptic devices,[3] or other intelligent

systems has long been a dream of modern
engineering. However, the challenges of
designing informative skins that are easy
to manufacture and allow meaningful rea-
soning from tactile input have stymied
such devices’ development. Of particular
(and especially biomimetic) interest are
wearable sensorized skins that approach
the sensing capabilities of the the body
and the reasoning capabilities of the
brain.[4] Intelligent gloves are especially rel-
evant, given the hand’s role as the primary
part of the body by which humans sustain
tactile interaction with their environment.
Such gloves, which ideally would have
the ability to mimic or even surpass human
perception, could replace or augment
human touch, and enable computers and
robots to understand humans’ interactions
with the world. This capability could unlock
applications in advanced prosthetics,[4]

healthcare and health monitoring,[5] and
physical rehabilitation.[6] Wearable gloves
could allow those with sensory loss to “feel”
or “see” the world again by providing them

with a glove that can sense for them.[4] They could be used to
monitor rehabilitation efforts and rates by providing feedback
as to grip strength, an indicator of stroke recovery,[6] or, monitor
tremors or muscle activity, potential health indicators.[5] In addi-
tion, there are many further applications in industrial manufactur-
ing,[7] soft robotic sensing,[8] and mixed reality interfaces.[3]

In this article, we present a wearable, sensorized glove (named
“Mens et Manus Glove” or “MemGlove” for short), toward the
ambition of approaching the sensing capabilities of the human
hand. By merging a novel dual-modality sensing architecture
with computational learning models, we have designed a glove
that is capable of advanced sensing tasks amenable to real-
world interaction, including proprioception (i.e., inference of the
wearer’s hand pose), temperature sensing, conductive sensing,
stiffness and force sensing, object classifcation, heart-rate moni-
toring, and even inference of dynamic tasks, all with highly
robust accuracy and real-time performance.

Developing a glove with these desired capabilities and proper-
ties is challenging, for several reasons. First, sensors must be
robust to the types of activity common in the human hand.
This includes being able to withstand a large range of motion
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Wearable devices have many applications ranging from health analytics to virtual
and mixed reality interaction, to industrial training. For wearable devices to be
practical, they must be responsive, deformable to fit the wearer, and robust to the
user’s range of motion. Signals produced by the wearable must also be infor-
mative enough to infer the precise physical state or activity of the user. Herein, a
fully soft, wearable glove is developed, which is capable of real-time hand pose
reconstruction, environment sensing, and task classification. The design is easy
to fabricate using low cost, commercial off-the-shelf items in a manner that is
amenable to automated manufacturing. To realize such capabilities, resisitive
and fluidic sensing technologies with machine learning neural architectures are
merged. The glove is formed from a conductive knit which is strain sensitive,
providing information through a network of resistance measurements. Fluidic
sensing captured via pressure changes in fibrous sewn-in flexible tubes, mea-
suring interactions with the environment. The system can reconstruct user hand
pose and identify sensory inputs such as holding force, object temperature,
conductability, material stiffness, and user heart rate, all with high accuracy. The
ability to identify complex environmentally dependent tasks, including held object
identification and handwriting recognition is demonstrated.
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and complex environmental interactions,[9] while providing high
sensitivity and repeatability in the sensors. Second, to fully
understand human interactions with the environment, both
kinematics (pose) and contact information are relevant. The ideal
glove must be able to capture both independently, but reason
about them jointly. This is challenging for many soft sensing
technologies, and even for vision-based systems, as many sen-
sors respond to both stimuli, making it hard to uniquely identify
the cause of a sensor response.[10] Finally, for such a device to be
practical for wide-scale deployment, such a device must be easily
and inexpensively manufacturable. Although there has been
a recent focus on the development of soft wearable systems
which can be rapidly manufactured,[11] many state-of-the-art
commercial gloves contain a complex assembly of embedded
electronics.[3] We present a glove with a simple, straightforward
recipe based purely on knitted and sewn fibers and interwoven
tubes, with no in-hand electronics.

Our solution is rooted in a number of observations. First,
resistive and fluidic sensors are naturally decoupled in input
sensitivity and do not interfere with each other, meaning they
can serve as building-blocks for pose and pressure sensing
capabilities, respectively. Second, using a fully conductive glove
as a base, we observe a smooth, learnable mapping between
deformation and material resistance. With a small number of
electrode points, we can estimate a large number of resistances,
which is quadratic in relationship to the number of electrode
points. Third, inexpensive materials can be used to achieve both
resistive and fluidic sensors, providing a fabrication strategy that
can take advantage of modern textile machine manufacturing
methods, has high design flexibility, and is well suited for human
motion.

2. Related Works

There have been a number of existing wearable glove and data
capture systems which integrate sensing and inference to enable
the identification of different stimuli. These sensing methods
come in many forms.

Computer vision is one approach which provides an unobtru-
sive method of tracking hand motion. Early approaches from the
1990s used markers and neural networks to identify hand pos-
tures and locations.[12] These technologies have evolved to enable
tracking of colored gloves,[13] or completely unmarked hands.[14]

The precision and reliability of such camera systems is high,
enabling applications such as sign language identification[15]

and gestural interfaces for gaming.[16] Despite the precision of
markerless vision systems, they have a limited field of view
and suffer from occlusion. They also cannot provide information
about complex tactile interactions between human hands and
objects, such as holding force or object temperature.[17] Such lim-
itations of vision-based systems motivate the adoption of in-hand
wearable sensorization, which are not limited by field of view or
occlusion, and can sense more than pose.

Soft skins and soft electronics provide a promising means
for achieving such wearable sensors. Realization of such
technologies has recently become more feasible, given low cost
electronics and wireless communication devices.[18,19] These
leverage a number of different sensing modalities including

capacitative,[20,21] resistive,[22–25] knitted resistive sensors,[26,27]

and stretchable electronics.[9,28] Many wearable devices focus
on providing tactile information or hand pose information,
advancing from previous work where the main focus was on
the detection of inertial forces[29] or acceleration.[30] A key limi-
tation of many of these sensors is the inability to decouple strain
and normal force responses. In addition, the sensors are often
challenging to fabricate, making it difficult to integrate multiple
modalities of sensing.

Recent years have given rise to a number of high-performance
gloves. First,[31] presented a glove system that leverages stretch-
able electronics to provide high-resolution strain sensing to mea-
sure hand postures. Fabrication is challenging, and there is no
method for identifying applied forces[32] developed a glove that
merged capacitive sensing with neural-network-based inference
to reconstruct hand pose with 5.3� error per joint angle.[32]

Contrasted with MemGlove, their approach achieves lower accu-
racy and cannot consider environmental interaction. HandSense
is an alternative approach based on many small soft capacitative
sensors to allow detection of microgestures focusing on detecting
very small changes in posture.[33] In the study by Sundaram
et al.,[34] researchers developed a high-resolution, low-cost glove
which applied learning techniques to identify grasp types and
modalities. Contrasted with MemGlove, this approach required
extremely complex manual assembly, and applications were lim-
ited to grasp classification, which is but one of our demonstra-
tions. In addition to research platforms, there have also been a
number of notable commercial wearable gloves, including the
Manus VR systems, which provides pose and limited pressure
information for VR applications;[3,35] these gloves are expensive,
require intricate on-board electronics, and have been surpassed
in pose-reconstruction accuracy by other state-of-the-art gloves,
including[32] and ours.

A primary limitation of most current systems is the focus on
using only a single sensing modality.[36] By comparison, human
skin has many different receptor types allowing inference of
pressure, pose, temperature, and other environmental stimuli.[1]

Although some wearable glove systems have shown temperature
monitoring[37] or heart rate sensing,[38] there is no one wearable
system that begins to show the breadth of sensing capabilities
that human skin possesses. Our glove is a first step toward
achieving rich, multimodal stimulus identification from two
simple sensing modalities.

3. Contributions

In this article, we present a wearable glove (Figure 1) that incor-
porates two novel sensing technologies—a resistive sensing
architecture and a fluidic sensing architecture. By applying
machine learning techniques, the glove can be used to perform
proprioception, identify a number of different stimuli and also
perform task classification. The resistive sensing measures the
spatially varying resistance of a conductive knitted glove as it
deforms, allowing postural information to be inferred. This is
achieved by multiplexing the measured voltage difference across
all pairs of strategically chosen probe points along the glove sur-
face. The fluidic sensing integrates flexible soft tubes sewn
directly into the glove’s surface. These tubes are attached to
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pressure transducers on one end, with the other end sealed.
By measuring changes in pressure within the tube, forces
applied to the tubes (and thus, force applied to the glove) can
be identified and reasoned about. While fluidic sensing has been
demonstrated in a few cases,[39–41] this article marks to our
knowledge that for the first time fluidic sensing has been com-
bined with a resistive sensing scheme for high-level computa-
tional sensing tasks. Further, unlike previous resistive sensors
in wearable devices which have been limited to simple morphol-
ogies or tasks,[42,43] we present a novel resistive sensing architec-
ture which is simple to fabricate and amenable to a wide range of
data-driven sensing tasks.

MemGlove, which relies primarily on knitting and sewing
technologies, can be rapidly (machine) manufactured. Further,
it uses only existing, commercial-off-the-shelf (COTS) materials.
In comparison with existing wearable systems, the dual-sensing
modalities offered by this glove allows pressure and pose to be
decoupled. This allows for a wide range of different sensory stim-
uli to be identified. In addition, by combining the two sensing
modalities we can reason jointly about the two signals, using
a machine learning approach. To our knowledge, ours is the
first wearable glove which allows for such combined pose and
pressure-based reasoning, allowing for state-of-the-art proprio-
ception as well as high accuracy on the currently widest array
of environment sensing tasks.

In this article, we contribute the following: 1) A novel fiber-
based glove design that uses a resistive knit architecture with
interwoven pressure sensors, which is simple to manufacture
with COTS components, inexpensive, and sensorially powerful.
2) A combination of two sensor modalities (conductive and
fluidic sensors) which are physically decoupled but jointly
reasoned about in a neural machine learning architecture,
allowing for a wide range of downstream sensing applications.
3) Demonstrations of pose estimation, environment sensing,
human state sensing, and static and dynamic task identification.

The remainder of this article is organized as follows. First, we
describe our design logic for the resistive and fluidic sensing
of our glove, followed by the machine learning pipeline used
to transform raw sensing data into higher-level reasoning.
Next, we describe the physical fabrication procedure for our
glove, along with how data were captured to train the various
neural network models used. Finally, we present demonstrations
of our glove on a wide range of both simple and complex tasks,
and conclude with thoughts toward future work.

4. Method

4.1. System Overview

MemGlove is based on the idea that resistive sensing can be used
to measure in-hand (pose) deformation, and fluidic pressure
sensing can be used to measure out-of-hand (tactile) deforma-
tion, i.e., contact pressures. Strategic design choices ensure that
these readings are mostly disjointed in the aspects of the inter-
action they capture, and they do not interfere with each other.
Thus, these readings provide maximum information to then
be (jointly) reasoned about by a downstream neural network
model. This neural network model is responsible for translating
raw signals to task-specific inference, such as hand pose recon-
struction, grasped object classification, and so on, and is trained
offline in a supervised manner from labeled ground-truth data.

One of our major contributions is the coupling of two
complementary sensors into the glove, unlocking powerful
downstream inference applications. We use a fully conductive
thread glove as a substrate for the resistive sensing and sew
in thin, tube-based sensors for fluidic pressure sensing.
Electrodes are placed in strategic locations so as to maximize
deformation information provided by resistance measurements.
The resistance between all unique pairs of electrodes is

Figure 1. Our wearable glove system. Resistive sensing and fluidic sensing combine to provide signals for strain and contact force information,
respectively. These signals are fed into a pretrained neural network architecture for inference, which is trained from captured data labeled with
ground-truth knowledge. Depending on the neural network used, the output of the network provides inference for a wide variety of downstream tasks,
which we demonstrate. Electrode points which are usually not visible have been colored and enlarged in the left-hand images for clarity.
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measured to allow large area measurements of strain informa-
tion. The tube-based fluidic sensors provide pressure signals
induced by compression, as per the ideal gas law. The fluidic
tube sensor’s fibrous nature allows it to be strategically sewn into
the glove in a manner to optimize the response to normal force.
The signals from the resistive and fluidic pressure sensing are
read synchronously, and the data are fed into a machine learning
model for task-based inference.

For comfort, electronics are packaged into a small form-factor
and mounted on the user’s wrist. This is another advantage of
our fiber-based system – both the conductive and fluidic sensors
require only compact transducers and minimal signal condition
electronics which can be unloaded from the hand. The electron-
ics are connected to a laptop that reads raw input signals
(resistance measurements and pressure signals) and feeds them
forward through a (context-dependent) neural network. The
choice of network is modular and depends on the user’s task,
be it hand pose reconstruction, grasped object stiffness estima-
tion, etc. We train these neural networks with recorded sensor
data and ground-truth labels captured for the task at hand.
The system is shown in Figure 1, and a bill of materials is given
in the Supporting Information.

In the remainder of this section, we describe and characterize
the resistive and pressure sensor design, detailing their decou-
pled nature, before describing our machine learning pipeline
that synthesizes sensor data into higher-level sensing.

4.2. Resistive Knit Strain Sensing

In this work, we explore a commercial off the shelf knitted
glove (Aglove) which has been developed to allow gloved use
of capacitive touch screens. Due to the inclusion of the high con-
ductance silver threads within the knit, the glove has a resistance

of �5Ωcm�1 which varies when a resistance is applied. Due
to the knit pattern, the material can undergo �70% strain and
when relaxed, the knit returns to a similar state. The knit pattern
is directional, and thus the sensitivity and sensing capabilities of
the knit are highly directional. Previous work has demonstrated
the capabilities of custom knit-based strain sensors,[44] identify-
ing how fabric and knit parameters can change the properties of
the sensor.[45,46] Our decision to add a finite number of electrode
connections to the “off-the-shelf” glove enables rapid creation.

To characterize the sensing capabilities of this knit, a section
of the material was placed in an Instron Machine and a strain of
0–50% applied for 80 cycles. This was repeated for directions
along and across the knit to characterize the directionality of
the sensing capabilities. Figure 2 shows that the knit shows high
sensitivity to strain along and low sensitivity to strain across
the knit. This is adequate for our purposes, as the majority of
deformations of the hand (particularly in the distal interphalan-
geal (DIP) and proximal interphalangeal (PIP) joints of the fin-
gers) bend in the direction along the knit. The response along the
knit shows high repeatability but also a very high hysteresis. This
is most likely due to the relaxation and nonlinear behaviors of the
knitted fibers. The average response time was found to be 0.35 s,
whereas the recovery time was longer, and for the 80 cycles per-
formed was found to be�0.8 s. This does potentially limit the use
of the knitted glove as a sensor for some application which require
a fast response, such as slip detection, but was not a major inhib-
iting concern for any of the applications presented in this article.

The choice of a fully conductive knitted glove as a substrate for
our sensors admits three further benefits. First, it is fiber-based,
making it easy to attach additional sewable components, such
as our fluidic tubes or conductive fibers for connecting wrist-
mounted electronics. This latter connection helps keep electron-
ics off the hand itself, avoiding the need for flexible electronics

Figure 2. a) Characterization of the conductive knit to applied strain in both directions; b) Characterization of the conductive knit to external and
interglove contact forces; c) Exemplar time series of the response of the fluidic tube sensor to a fixed force and normal pressure; d) Exemplar time
series of the response of the fluidic tube sensor to a fixed strain.
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and promoting ergonomic use. Second, the knit structure of the
glove has minimal strain-based response to normal force/pres-
sure. This ensures that the (pressure) responses of our fluidic
tubes are maximally decoupled from the response of the knit.
Finally, because the glove is fully conductive, hand self-collision
(including fingertip-fingertip or fingertip-palm contact, as seen
in an “OK” or “thumbs-up” gesture, respectively) emits a notice-
able signal, making it easy to computationally detect these types
of gestures.

4.3. Fluidic Tube Sensing

The principle behind our fluidic tube sensing is based off the
ideal gas law: PV ¼ nRT . Compression of the fluidic tube caused
by contact results in an inversely correlated response in internal
pressure. As we will later show, the choice of fluidic sensors has
additional benefits – its correlation to temperature means we can
also detect changes in held objects’ temperatures (given constant
holding force). The fluidic sensors complement the sensing of
the knit matrix, providing out-of-plane deformation information
typically caused by environmental interaction. Our fluidic sen-
sors are constructed from soft flexible tubes, sealed at one
end and connected to a pressure transducer with an airtight seal
at the other end. Although any airtight tubes or bladders could be
used, a thin soft tube allows for easy integration into the glove.

To characterize the fluidic tube sensors, a cyclic normal force
profile from 0 to 50 N was applied using an Instron Machine,
repeated 80 times. The results from this characterization of
normal force are shown in Figure 2. The sensor is sensitive to
normal force and shows a linear and repeatable response with
minimal hysteresis.

The strain response of the sensor is also investigated; ideally,
the sensor should show a low sensitivity to strain so that normal
force is isolated. Strain was applied to the sensor incorporated in
the knit and cycled between 0% and 50% strain 60 times. This
response is also shown in Figure 2. Although there is some
response, it is far lower than that arising from normal force.

4.4. Learning Architecture

Our goal is to learn pose reconstruction and task classification
in a supervised manner. To do this, we implement neural
network architectures that combine our six tube pressure
readings and our 120 multiplexed resistance readings (from
16 electrodes) into single or multidimensional (in the case of
hand pose reconstruction) predictions. Our goal is to choose a
simple neural-network-based architecture that can be reused
for all tasks. AsMemGlove is carefully designed to provide robust
signals regarding wearer interactions, we find that even simple
learning architectures are capable of providing highly accurate
task-based inference. As our data are not organized in a particu-
lar grid-based or sequential fashion, we use a fully connected
multilayer perceptron (MLP), which is well-suited for general
unstructured data. We further train a long short-term memory
(LSTM) model, using an MLP for each cell, to improve inference
on temporally correlated tasks (such as hand motion). For each
task, we compare the MLP and LSTM architecture; typically,

the LSTM outperforms the MLP when samples are highly
temporally correlated and constantly changing, and vice versa.

For each task, we record combined pressure and resistance
readings, along with the ground-truth target for prediction—this
can either be labels (for classification tasks, such as object
identification), or real numbers (for regression tasks, such as
temperature prediction), and can be one or multiple output
labels. While we learn different neural network weights for each
task, we reuse the same network architectures for nearly every
task, which we have found work with high efficacy. The fact
that the same architectures can be reused for each task makes
learning new tasks simple and straightforward, and requires
little hyperparameter search.

Our network architectures use standard, state-of-the-art
techniques to improve inference performance. We apply layer
normalization at each layer of the neural network.[47] The activa-
tion at each layer of the neural network is a rectified linear unit
(ReLU), except for the final layer, which uses the tanh or softmax
function, for regression and classification respectively. Each
network used two layers of 64 hidden units, except for the more
complex multidimensional prediction of hand pose reconstruc-
tion. Inspired by the work of Glauser et al.,[32], hand pose recon-
struction uses a 2048-2048-2048-2048-1024 architecture for the
MLP and a 512-512 architecture for each cell of the LSTM.
We use standard loss functions for training; for regression tasks,
such as temperature classification or hand pose reconstruction,
we minimize the mean-squared error of the target output predic-
tion; for classification tasks such as object classification, we
minimize the cross-entropy measure.

As described, our architectures are based on established,
vetted components. This makes implementing highly optimized
versions of our models easy and compact. In our case, all models
were implemented in TensorFlow.[48]

5. Implementation

5.1. Fabrication

The wearable glove is fabricated in two processes, as shown in
Figure 3. First, the electrode connection points are added to the
knitted glove “substrate,” after which the fluidic pressure sensors
are integrated.

5.1.1. Process 1: Resistive Knit Sensor Design and Fabrication

Using a conductive knitted glove as a base structure for the wear-
able device, a number of fixed connection points are made.
By sequentially measuring the resistance between all pairs of
n connection points, there are nðn�1Þ

2 resistance readouts, provid-
ing quadratic scalability in sensing. This is a similar approach to
impedance spectroscopy. In this work, we consider 16 readout
points which provides 120 unique sensor readouts.

A key design consideration is the placement of the electrode
connections to the glove. This is a finite number, limited by elec-
tronic and fabrication constraints. The locations chosen should
maximize the information that can be gained. Electrode connec-
tions have been made at points between joints to optimize the
capture of strain resulting from joint bending. The 16 connection
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points chosen provide one connection point per major facet
(i.e., bone between joints) of the hand, consisting of one connec-
tion per finger joint and two on the palm, as shown in Figure 3b).
While the knit sensing only provides sensing along the fingers,
the change in bulk material or contact between fingers allows
sensing of stretch and movement in the direction across the
hand. Although more readout points would provide more infor-
mation, this design provides a good trade off in the complexity of
hardware and the information gained.

The electrode connections to the glove have been created
using a thin, soft, flexible, insulated multicore wire. The ends
have been stripped and tied to the glove in the appropriate loca-
tion on the inner side of the glove. The insulated wire is then
tacked to the back of the glove, using a zigzag pattern to provide
slack such that the wire does not prevent or limit movement
while being comfortable for the wearer. To achieve the sequential
resistance reads from the glove, each of the wired connections to
the glove connection points is connected to two 16 channel

multiplexers. The analog outputs from the two multiplexers
are connected to a balanced Wheatstone bridge. By cycling
through all unique combinations of resistor pairs, this builds
up a map of resistance network of the glove. An Arduino Due
microcontroller is used to control the multiplexers, with the out-
put from these connected to the 12-bit Arduino Analog to Digital
Converter (ADC). The balancing resistors have been chosen to
maximize the output to the ADC. Themicrocontroller reads from
each of the unique combinations of the glove and then transmits
these over serial to the control personal computer (PC).

5.2. Process 2: Integration of Fluidic Sensors

The pressure sensors use a 2mm outer diameter soft tube, which
is highly flexible and can be sewn or woven into the glove with
few limitations in form. One end is sealed by knotting, and
the other end is given an airtight connection to the pressure
transducer using an epoxy resin. Our design uses six pressure

Figure 3. a) Recipe for the fabrication of our wearable glove; b) The layout of the sensors on the glove (top) and the fabricated glove including
sensor integration; c) System architecture diagram showing the interactions between key components; d) Raw exemplar time series data from both
the resistive and fluidic sensors for a variety of different hand poses.
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sensors—one on each of the five fingers, and one on the palm.
The tubes have been integrated such that they run along centrally
along the flats of the fingers. They are then routed in a gentle
curvature along the fingers to flex outward at the joints when
bent. This is to maximize the response to normal force and
minimize false-positive reads induced by finger bending, while
also ensuring they do not limit or obstruct finger movement.
This layout is shown in Figure 3b.

The pressure is measured using a Freescale MPXV6115V
ported pressure transducer which provides an analog response.
Each sensor is connected to an analog input on an Arduino Due
which provides 12-bit resolution. The changes in pressure that
are measured are very small (ranging from around 3 to 100 Pa),
and the transducer has a sensitivity of 38.26mV kPa�1; thus we
perform oversampling to increase the resolution. By capturing
256 samples and averaging, we increase the resolution to 16-bit
corresponding to the detection of 0.05mV changes; this allows
us to capture the small changes in pressure which occur.

5.3. Electronics and Data Capture

The data from both microcontrollers are communicated via serial
to a PC where it can be read live or stored locally. Data are read
simultaneously from the two microcontrollers, with data cap-
tured at �16Hz, which is sufficient for all the applications con-
sidered in this work. If needed, the hardware could be later
optimized to increase the read-out frequency.

In many of the experiments, an additional sensing system was
used to record ground-truth labels for learning. Of particular
note, to obtain ground-truth hand-posture for hand pose recon-
struction, a Leap Motion hand tracking system was used. This is
a system that has been successfully used for other motion

tracking research,[49] and has been demonstrated to have a posi-
tional accuracy of up to 200 μm.[50] To obtain synchronized
motion tracking data, the raw data from the Leap Motion were
also read over serial alongside the data from the glove. The data
were converted to the hand model from the study by Tkach
et al.,[51] ignoring the (irrelevant) global and wrist degrees of
freedom. This model is shown in Figure 4b. In other experi-
ments, a temperature sensor or a force sensor was incorporated
to provide a ground truth. Similarly, these were connected to a
microcontroller, with the data simultaneously read over a serial
connection.

To ensure classification and regression tasks transfer between
different glove-wearing sessions, all datasets were captured in
multiple sessions. Between each session, the glove was fully
removed and put back on again after a time period of at least
30min. This rules out wear on the glove as a source of potential
overfitting. Data were recorded in at least five sessions for
classification tasks, and at least three sessions overall for each
regression task.

5.4. Training Procedure

Training data were randomly divided into three sets: 45% of the
collected data was used as a training set, 45% of the data was used
as a validation set, and 10% of the data was used as a test set.
Data were normalized in the training sets; those normalization
constants were then reused for normalizing validation and test
sets. As much as possible, data from the same recording session
were kept together in the same set to ensure generalization of
learned models on one session’s captured data to another’s.
For all tasks, training was stopped when the validation loss
ceased to decrease any further.
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For all tasks we report the loss, as defined earlier, as well as a
more human interpretable measure of real-world performance.
For classification tasks, we report the probability of correct label
classification. For regression tasks, we compute the average
absolute error of the measurement. In the case of pose estima-
tion, which has multidimensional prediction, this is the average
error over all output angles.

6. Results

In this section, we demonstrate the sensing and inference
capabilities of the glove system on a wide array of tasks. First,
we demonstrate the ability of MemGlove to measure the intrinsic
state of the user, including state-of-the-art accurate propriocep-
tion (hand pose reconstruction), as well as heart-rate monitoring.
Second, we demonstrate how MemGlove can be used to infer
wearer interactions with the physical environment. Finally, we
demonstrate how our sensing suite combines for complex task
classification, specifically classification of grasped objects and
written letters. All training experiments were conducted on a lap-
top with a 2.9 GHz Intel i7 processor and a NVIDIA GeForce
GTX 1080 GPU. In the following section, we present smoothed
training, test, and validation data which were calculated with
a smoothing window of 200 such that the general trends can
be better observed. The raw results can be found in the
Supporting Information.

6.1. Wearer-Intrinsic Sensing

We begin by demonstrating MemGlove’s capability to recon-
struct wearer hand pose, traditionally a very difficult problem
with major implications for applications in virtual and mixed
reality. Second, we demonstrate a simple application in health
monitoring, specifically the capability of MemGlove to accurately
predict the user’s heartbeat. For both of these applications, we
use only the resistive information of the glove, as we are not
interested in interactions with the environment.

6.1.1. Hand Pose Reconstruction

Our first application is hand pose reconstruction, in which
our system must infer the pose of the wearer’s hand. We aim
to faithfully reconstruct all joint angles of the hand, as per the
kinematic hand model in the study by Tkach et al.[51] In this
model, each finger (including the thumb) is modeled as having
a ball joint at the base with three degrees of freedom, and two
revolute joints further along the finger. See Figure 4b for a
reference of the hand model. Pose reconstruction is notable
as this example has a multidimensional output (25 joints) to
predict.

The resistance data from the glove and the ground truth of the
joint configuration were captured, with the (approximate) ground
truth data being captured from a leap motion device. About �30
min of training data was captured, where the user aimed to move
the hand in varying poses. Our trained MLP and LSTM were
able to achieve an average per-joint accuracy of 6.40� and 4.78�

respectively. Training curves are presented in Figure 4; as this
task involves a lot of motion, the LSTM is able to leverage this

dynamic information for higher reconstruction rates. We note
that our LSTM-based reconstruction dominates even the
best results in the study by Glauser et al.,[32] the previous
state-of-the-art which boasted on average 5.3� per joint error
for the most fine-tuned model. Training is also realistically fast:
for even this, our largest and most computationally expensive
task and model, wall-time for training is 4.2s per epoch for
the MLP, and 19s for the LSTM (we note all other experiments
ran faster). Table 1 shows a breakdown of how that error is
distributed across each particular joint; we further include a
summary of how that error is distributed among the different
biological joint classes. As can be seen, the majority of the joint
errors are exceptionally low, evenmuch lower than 5� on average.
The primary exception is the abduction of the fingers, which
has 10�–15� average error. This is likely primarily because
MemGlove has poor sensitivity to strain response caused by lat-
eral positional motions, due to the structure of the knit. The large
standard deviations (and a nontrivial contribution of the error)
are caused from spurious frame captures from the leap motion
which occasionally invert the entire hand—we obviously cannot
model this, leading to a heavy tail in our reconstruction distribu-
tion. Still, even with these combined errors, MemGlove demon-
strates superior overall average reconstruction.

6.1.2. Heart Rate

In this demonstration, we show MemGlove’s ability to infer
the wearer’s heartbeat. For this one application, we did not
use a neural network estimator, but rather used standard signal
processing tools and techniques to capture the periodic response
of the heartbeat.

Although the most significant changes to the measured resis-
tance of the glove correspond to postural changes, there are
small changes that correspond to slight expansion/contractions
resulting from the heart rate. Due to the many data channels in

Table 1. Mean and standard deviations of joint error for LSTM-based
reconstruction (�).

Per joint reconstruction errors

Joint # Mean error Std. deviation
of error

Joint # Mean error Std. deviation
of error

1 1.33 2.14 14 3.13 6.60

2 6.50 13.11 15 4.98 9.88

3 17.28 27.54 16 2.07 3.86

4 3.62 6.05 17 0.36 0.73

5 4.57 7.95 18 5.12 47.63

6 2.28 3.99 19 3.29 6.54

7 1.05 1.59 20 5.35 9.24

8 18.00 82.56 21 1.90 3.50

9 3.85 7.32 22 1.27 2.22

10 6.09 11.23 23 12.92 24.64

11 1.92 4.16 24 3.85 7.73

12 0.33 0.71 25 5.08 8.54

13 3.45 47.46
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the glove, it is possible to average the frequency component over
all sensors, filter, and extract the heart rate, even though the
effective induced strains are small.

To obtain the heart rate, the raw data from the glove held in
a static pose are windowed over a 5 s period. For each of the
resistive channels on the glove, the signal is converted into
the frequency domain using a fast Fourier transform (FFT)
and applying a low-pass filter, over which the responses from
all sensors combined. By computing the power density of FFT
and performing peak detection, the heart rate can be estimated.
Due to the 16Hz sampling rate of our current glove, the preci-
sion of the heart rate is only to the nearest 1 or 2 beats per minute
(bpm); still, this is sufficient for many medical and fitness heart
rate monitoring applications and is competitive with consumer-
grade monitors, such as Fitbit.

Data were collected with the user holding their hand in a
neutral, approximately still pose. Approximately 10min of data
was captured during which the user performed light exercise
(walking in place) to vary their heart rate. A wearable Fitbit heart
rate monitor which has a precision of �2 bpm was also worn to
provide ground truth. To ensure that that the glove is responding
to only the heart rate measurements and not to, say, small
changes in hand kinematics, the glove was placed on a manne-
quin hand (which has no pulse) as a control, and the experiment
was repeated, ruling out this possibility.

Figure 4c shows an example of the power spectrum obtained
from the FFT. There is a clear peak at around 1Hz, correspond-
ing to a heart rate of �60 bpm. A comparison between the heart

rate determined by the glove, and that measured by the Fitbit
for the 10min period is also shown. Overall, there is a strong
agreement between the two devices’ estimates.

6.2. Extrinsic Sensing

In the following section, we demonstrate the ability of
MemGlove to sense external stimuli as a wearer interacts with
the environment.

6.2.1. Holding Force

As a first, straightforward demonstration of extrinsic sensing, we
show how MemGlove can be used to estimate the force with
which a wearer is grasping a target object. This is a straightfor-
ward task, as the data captured from the fluidic pressure sensors
naturally correlates with force. Therefore, for this task, we only
use the fluidic pressure data. Holding force is a useful statistic, as
it can be an indicator of health and recovery from several medical
conditions, including muscular atrophy. To capture ground-truth
data, a calibrated force sensing resistor (FSR) was attached to a
rigid plastic bar. The bar was held and repeatedly grasped with
different forces with data recorded from the fluidic sensors.
Approximately 2 min of test data was obtained.

Figure 5b shows the experimental setup, the test and training
losses, and the performance using the trained networks. Because
the grasps were changed rapidly throughout data collection,
training data varied rapidly, and so only an MLP was considered
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Figure 5. a) Holding force experiments; b) Evolution of the loss function for training, test, and validation sets, as well as real-world performance
(in terms of average error) for holding force estimation; c) temperature experiments; and d) evolution of the loss function for training, test, and validation
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here. The trained network shows an average error of 1.74 N,
which is low in comparison with grasping forces which can range
from 0 to 80 N.

6.2.2. Object Stiffness

In a slightly more complex but similar task, we seek to measure
the stiffness of grasped elastic objects. As the pressure tubes are
also compliant, different object stiffnesses induce different
deformations on the tubes at similar grasp strength, which leads
to different pressure readings. Similar to the holding force
experiments, this task also only relies on the pressure data read-
ings. To investigate the ability of MemGlove to infer grasped
material stiffness, six geometrically identical cubes of side
25mm were fabricated from materials of varying stiffness
including 3D-printed materials, EcoFlex silicones, and foams
(full details are given in the Supporting Information). Each object
was then grasped with the same hand pose and similar grasp
strength. Time series data from the two sensors were obtained
for six objects, all with ten repetitions.

Figure 6a shows the training, validation, and test losses as well
as classification probabilities, alongside a visual demonstrate of
the experiment. As expected, as this is mostly static task, the MLP
outperformed the LSTM, but both networks approached 100%
classification rates.

6.2.3. Object Temperature Sensing

Although not a mechanical task, both our pressure sensors and
our resistive sensors have the ability to inform estimates of
grasped object temperature. Changes in temperature have a
direct correlation with the resistivity of the knit glove; further,
the fluidic pressure sensor readings are directly correlated
temperature through the ideal gas law. Both measurements
are used to provide an estimate of the temperature of grasped
objects. Although both sensor modalities show some hysteresis
in raw signal, the combination provides increasingly unique
signatures for temperature change offering the potential of
improved temperature detection. Further, the LSTM model pro-
vides smoothing and increased accuracy by considering signal
history, resulting in no noticeable hysteresis or lag in prediction.

To obtain temperature training data, a thin coffee cup was
equipped with an LM35 temperature sensor and hot water added
to the cup. As the water cooled, the cup was held with a constant
grasp. Data were recorded from the glove and ground truth
obtained from the temperature sensor. This process was repeated
five times with the cooling process accelerated via the addition of
small amounts of cool water. Figure 5b shows the experimental
setup, the training and test loss of the trained networks, and the
performance of the trained network in terms of estimated abso-
lute temperature difference. Both the MLP and LSTM network
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perform well, but as temperature readings vary smoothly over
time, the LSTM network outperforms MLP, achieving an average
temperature estimation error of just over 1.0 �C.

We further use this experiment to examine the benefit of
using two sensing modalities instead of one. Herein, we examine
the mean error and standard deviation of the minimum mean
test error recorded during training, averaged over three training
runs. Our experiments demonstrate that pure resistive knit
sensing provides an error of 0.96 °C� 0.02 °C, fluidic pressure
sensing provides an error of 1.2 °C5� 0.03 °C, whereas both
modalities combined provides an error of only 0.92 °C� 0.01 °C.

6.2.4. Material Conductibility

The resistive nature of the glove allows for identification of the
conductibility of grasped materials. When the glove comes in
contact with a conductive material, the material will act as a
conductive path, changing the resistance profile of the glove.
Such capability could have applications, for example, in sorting
in recycling units, for separating metallic and nonmetallic recy-
clables. We treat this as a binary detection (conductive or noncon-
ductive) task and do not attempt to estimate the conductability of
the grasped object. As only the resistive sensing is sensitive to
conductibility, it was the only sensing modality used for this task.

Data were collected for five different objects (box, pen, small
ball, tube and soft toy). In one training data set, they were covered
in aluminum foil to make them conductive, and in the other, they
were not, remaining nonconductive. Each object was grasped five
times in both configurations.

This is a particularly challenging task, as the changing grasp
interferes with the readings caused by the conductance changes.
Ultimately, our networks are able to achieve 84.7% accuracy in
classification between nonconductive and conductive objects—
significantly better than random (Figure 6). This demonstrates
that conductive pathways can be detected by the glove despite
changing postures.

7. Complex Task Classification Tasks

In this section, we demonstrate MemGlove on twomore complex
tasks, one static, and one dynamic, in the form of grasped object
classification and handwriting classification. For both of these
complex tasks, both resistive and pressure sensors were needed
and used to achieve the accuracies reported.

7.1. Object Identification: Static Task

To demonstrate the combined capabilities of MemGlove’s
sensors on a complex classification task, we seek to identify clas-
sification of the natural grasps of 30 objects. This reflects
a scenario in which the glove could be used to assist with task
identification through identification of a task-relevant, held item.
The 30 household items (Figure 7a) selected were chosen to test
the capabilities of the glove. These objects are of variable stiff-
ness, shape, size, density, and material. To challenge the ability
of the glove to differentiate similar objects, we included a num-
ber of objects with the same shape, but with different material
properties, e.g. metallic verses plastic, or soft verses hard.

The training data set was generated by grasping each object
ten times and recording time series data from both sensors after
the object was grasped. Figure 7b shows the training and test loss
and the performance of the classifier. As expected in this static
task, the MLP slightly outperforms the LSTM network and
achieves close to 100% classification success.

7.2. Handwriting Identification: Dynamic Task

As a final, challenging demonstration of MemGlove’s capabili-
ties, we investigate its ability to disambiguate handwritten
letters. This task not only highlights the glove’s precision
(as handwriting leads to only small changes in posture and pres-
sure distribution within the hand), but also presents a practical
use case, providing another mode as an input device (e.g., for
giving regular pens the capabilities of smart pens, such as the
LiveScribe). It is also is a task in which there is large noise in
the dataset; no handwritten letter is ever the same twice.

For each of the first ten letters in the English language
alphabet (a through j), data from the sensors when the user wrote
each letter was recorded, with 15 samples collected for each letter.

Figure 7 shows the experimental results, showing that each
letter has a distinct enough signature to allow for accurate clas-
sification. The MLP and LSTM both providing classification rates
in the mid 80% range, compared with the 10% accuracy of true
random.

8. Conclusion and Discussion

In this article, we presented a novel wearable glove design that
combines knitted resistive sensing and fluidic pressure sensing
with machine learning-powered reasoning for advanced real-
world, real-time inference applications. We have demonstrated
that MemGlove not only provides state-of-the-art hand pose
reconstruction, but also unlocks applications in heart rate, tem-
perature, force, stiffness, and conductibility sensing, as well as
static and dynamic task classification. The range of different
stimuli which the glove can reason about is significant, and
outperforms previous work. Further, our fiber-based glove has
low material cost and is exceptionally simple to fabricate using
COTS components and is amenable to semiautomated or fully
automated machine textile manufacturing methods.

MemGlove currently possesses a few limitations that would
be worth investigating in future work. First, MemGlove has
currently only be tested in single domain inference tasks. This
means we can infer, e.g., hand pose, temperature, or holding
force independently, but not jointly. Since similar changes in
signal are used to learn each output label, we would likely need
to improve the design or augment the glove with sensors and a
more sophisticated reasoning pipeline that can better disambig-
uate the cause of the signal. Second, the temporal and signal
resolution of MemGlove is limited by our choice of electronic
hardware. Better electronics with higher resolution could be
incorporated at additional monetary cost, bulk (affecting com-
fort), and complexity. It would be interesting to investigate these
trade offs. Third, although our sensor architecture is effective
and was chosen strategically, there is no evidence that our sensor
placement is optimal. Computational or data-driven methods for
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optimizing sensor placement could further improve performance.
Fourth, it would be helpful to add additional sensors to improve
accuracy and precision of the abduction estimation. Finally, as
this glove is a fiber-based wearable, it would be useful if it its con-
nections could be modified to be resilient to machine washing.

Given its accuracy, robustness, and versatility, we believe
MemGlove can unlock exciting applications in many fields. Soft
robotic hands can use a modified version of our sensor architec-
ture and machine learning pipeline for better proprioception and
tactile manipulation. Virtual and mixed reality games and other
applications could benefit from more immersive gestural input.
Further, from heart rate sensing to hand force and motion moni-
toring, we believe MemGlove has many exciting opportunities
in application to the medical field. We look forward to further
investigation and application of our work in these and other fields.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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