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Abstract—Shot boundary detection (SBD) is an important pre-
processing step for video manipulation. Here, each segment of
frames is classified as either sharp, gradual or no transition.
Current SBD techniques analyze hand-crafted features and
attempt to optimize both detection accuracy and processing
speed. However, the heavy computations of optical flow prevents
this from happening. To achieve this aim, we present an SBD
technique based on spatio-temporal Convolutional Neural Net-
works (CNN). Since current datasets are not large enough to
train an accurate SBD CNN, we are the first to present a very
large SBD dataset that allows deep neural networks techniques
to be effectively applied. Our dataset contains more than 3.5
million frames of sharp and gradual transitions. The transitions
are generated synthetically using image compositing models. Our
dataset contain additional 70,000 frames of important hard-
negative no transitions. We perform the largest evaluation to date
for one SBD algorithm, on real and synthetic data, containing
more than 4.85 million frames. In comparison to the state of the
art, we outperform dissolve gradual detection, generate compet-
itive performance for sharp detections and produce significant
improvement in wipes. In addition, we are up to 11 times faster
than the state of the art.

Index Terms—Shot Boundary Detection, Convolutional Neural
Networks, optical flow, spatio-temporal.

I. INTRODUCTION

With the wide adoption of digital video, the demand for
editing and manipulating video content is in continuous rise.
This, however, requires better understanding of videos and
their composition. Videos are composed of different camera
shots placed after each other. A video shot transitions into
another through several forms of visual effect. These visual
effects can be classified into two main categories: sharp and
gradual [1] as shown in Figure 1. The former is a sudden
change of the shot over 1 frame, while gradual transitions
occur over multiple frames. Gradual transitions are further
classified into dissolve and non-dissolve. The former includes
cases such as semi-transparent graduals, fade in and fade out
(see Figure 1). Non-dissolve are dominated by wipes (see
Figure 1). Wipe graduals have a much wider variety than the
dissolve graduals.

Video post-processing techniques are in rising popularity
and they cover a wide range of applications. This includes

video coding [2], visual quality enhancement [3], [4], graphics
rendering [5]–[7], video understanding [8], [9] and many
others [10], [11]. Such post-processing techniques, however,
are based on assumptions, some of which can be violated
during shot transitions. For instance, many techniques assume
the presence of one layer at one spatial point, an assumption
heavily violated during dissolve transitions. This can lead to
unpleasant artifacts as in the case of 2D-to-3D conversion
(see Figure 2). Here, the disparity maps can undergo strong
artifacts during gradual transitions. Hence, detecting video
transitions and assigning a special treatment for them during
post-production is an important and desirable step. However,
with the high computational demand of many post-production
techniques, as well as the real-time requirement of some, shot
boundaries detection (SBD) needs to be performed with both
high detection accuracy and very fast processing speed.

Current SBD techniques analyze hand-crafted features [1],
[12]–[20]. Fast techniques analyze only spatial information
such as intensity histogram [13], [19], edges [15], mutual
information and others [16]–[18], [20]. Such techniques, while
being fast, generate poor detection. To boost detection, motion
information is incorporated through optical flow [1], [12], [21],
[22]. However, the heavy computations of optical flow [23]–
[25] make such techniques slow. As SBD techniques are com-
monly used as a pre-processing step for video manipulation,
optimizing both their detection accuracy and processing speed
is important. This, however, remains a challenging problem.

We present DeepSBD, a fast and accurate shot boundary
detection through convolutional neural networks (CNN). We
exploit big data to achieve high detection performance. In
addition, we exploit the parallelizable nature and common
GPU implementations of CNNs to achieve fast processing
speed. Our technique takes a segment of 16 frames as input,
and classifies it as either gradual, sharp or no-transition.
It analysis both spatial and temporal information through
an effective 3D convolutional network for video processing,
inspired by C3D [26].

To train our network, we need a well-annotated very large
dataset. Despite datasets already exist from the TRECVID
challenge and others [1], [27], experiments show they are not
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Fig. 1. Shot transitions are classified into two main categories: sharp and gradual. Gradual transitions are further classified into soft and wipes. Soft include
semi-transparent, fade in and fade out. Wipes are the most ill defined form of transitions.

sufficient to train a high accuracy CNN solution. In addition,
the vast majority of these datasets are used for testing and
evaluating different techniques, and hence should not be used
for training. To overcome this problem, we present a very
large SBD dataset with clean and accurate annotations capable
of training a highly accurate CNN SBD solution. This also
allows us to test on all available TRECVID data (3.9 million
frames) [1]. The first dataset portion, SBD Syn, is generated
synthetically using image compositing models. It contains
220,339 sharp and gradual segments, each segment contains
16 frames. The second portion, SBD BT, contains 4,427 no
transition segments. They are carefully manually annotated
in a way to improve detector’s precision; they act as hard-
negatives. We optionally use 1 TRECVID release (2005) and
another SBD dataset of Baraldi et al. [27] to further improve
performance. These datasets have 18,027 total transitions with
prior annotations. That is only 7% of all training datasets.

Aspects of novelty of our work include:
1) The first CNN SBD technique. We outperform dissolve

gradual detection, generate competitive performance for
sharp detections and produce significant improvement in
wipes. In addition, we are up to 11 times faster than the
state of the art.

2) Introduction of a new very large SBD dataset for training
an accurate CNN model. Our dataset contains 3.5 mil-
lion frames of synthetic transitions and 70,000 frames
of hard negative no-transitions.

3) A large wipes dataset containing 1.1 million frames.
We will release all our data-sets and code to encourage
future research.

4) The largest SBD evaluation to date on 4.85 million
frames. 3.9 million frames are from all TRECVID years
[1] while most of the rest are synthetically generated.

The next section reviews the state of the art. Here, we
discuss the main components of our solution including current
SBD techniques, current available SBD datasets and CNN
solutions for video spatio-temporal analysis. We then present
our SBD solution with emphasize on our detection system and
our dataset generation process. Section IV presents detailed

Fig. 2. A figure illustrating the importance of shot boundary detection during
2D-to-3D conversion. Here, we show consecutive frames from two sequences.
For each frame we show its original RGB image (left) and the corresponding
disparity map (right) as estimated by the 2D-to-3D conversion technique of
Bae et al. [7]. The disparity maps is a gray-scale image where white represents
objects close to the screen. Note how the disparity captures the humans
outlines before and after transitions (first and last frame). During gradual
transition, however, the outline is severely destroyed. This is because gradual
transitions violate the single layer model used by many video processing
techniques. Hence, it is desirable to detect such gradual transitions and to
give them a special treatment during post-processing. For this, shot boundary
detection is essential.

results and analysis. The results are also supported by a sup-
plementary material (in .pdf format, please examine). Section
V is conclusion.

II. STATE OF THE ART

A. Shot Boundary Detection Techniques

SBD techniques [1], [12], [13], [22] extract features and
analyze them temporally. Detection is then performed by
finding temporal profiles that fit the examined transition model.
Sharp transitions undergo a sudden change in the temporal
profile over one frame. Gradual transitions exhibit a more



3

stretched change in time. Current SBD techniques are classi-
fied into two main categories: spatial-only and spatio-temporal
analysis based. The former estimates the temporal profile by
comparing only spatial features [1], [12]–[20]. A number of
spatial features are used such as color histograms [13], [19],
edges [15], mutual information and Entropy [16], wavelet
representations [12], SURF [28] and many others [17], [18],
[20], [29].

Spatial-only SBD methods generate conservative detection
accuracy with fast processing speed. Spatio-temporal tech-
niques use optical flow to make detection more robust to
scene and camera motions [12], [14], [30], [31], [31]. Such
motions can arise due to camera movements and shakiness and
often confuse the detection process. Hence, optical flow [23]–
[25] between neighboring frames is estimated and removed
through frame interpolation. Analysis of the temporal profile is
then proceeded as in the spatial-only techniques. Here, motion
compensation often reduces false detections of SBD. The main
drawback of spatio-temporal techniques, however, is the heavy
computations of optical flow.

Among the rich SBD literature, four of the best performing
and/or most recent techniques are Liu et al. [22], Yuan et
al. [32], Lu et al. [13] and Priya et al. [12]. Lu et al.
focuses more on generating fast results and hence they do
not incorporate motion information. Their technique is based
on assessing temporal discontinuities through HSV histogram.
Priya et al. [12] proposed a wavelet based feature vector that
measures four main quantities: color, edge, texture, and motion
strength. The feature vector is extracted for each frame of a
sequence and the temporal profile is estimated through frame
differencing. Liu et al. [22] uses a large number of features
including color, histogram, edge, motion and related statistical
features. Liu et al., Priya et al. and Yuan et al. all focus on high
detection accuracy. This, however, comes with the high cost
of optical flow. Furthermore, the techniques of Apostolidis et
al. [28] and Berladi et al. [29] were recently released. They
analyze only spatial information such as SUFR and HSV/color
histogram and hence often generate conservative performance
with fast processing speed.

To the best of our knowledge, Liu et al. [22] is the latest
wipe detector. A candidate transition segment is proposed
and the difference between each frame and the start and end
frame is calculated. This generates two curves, one for the
start and another for the end of the segment. For wipes,
the curves should have opposing gradients and somewhat
linear. Furthermore, to reduce errors due to camera and object
movements, motion compensated frame differencing is used.

B. SBD Datasets

Between the years 2001 to 2007, the National Institute of
Standards and Technology (NIST) [33] maintained data for
the TRECVID shot boundary detection (SBD) challenge [1].
The dataset contains a wide variety of content including color,
gray-scale, indoor, outdoor, outer-space and different levels of
noise. The dataset has a total of 4,333,153 frames with 24,423
transitions, 64% of which are sharp. The rest are gradual.
Transitions were manually annotated in a way to distinguish

between sharp and graduals. Four more releases from a dif-
ferent challenge were maintained by NIST that contain data
relevant to SBD. The releases are T2007t, T2007d, T2008 and
T2009, containing 34,765,424 frames with 155,902 transitions.
The annotations of these data, however, do not distinguish
between sharp and graduals. Finally, one more data release
related to SBD was generated by Baraldi et al. [27]. Here,
the authors addressed the different application of video scene
segmentation.

We collected all the SBD related dataset. However, some
TRECVID data appear not to exist anymore and/or they
can not be tracked. Despite being a large dataset, several
factors prevent them to be used for training. First, most
of T2001 and T2002 should be removed due to their poor
annotations. In addition, at least T2007 and the rest of T2001
should be removed as they are commonly used for evaluation
[12], [13], [22]. This leaves at most 15,163 sharp and 7,274
gradual annotations from TRECVID and Baraldi et al. [27].
Experiments show this is not sufficient to train an accurate
SBD CNN.

C. Spatio-temporal analysis using CNN

Our solution analyzes both spatial and temporal information
through CNN. Hence, our network is related to the litera-
ture on video classification. Karpathy et al. [34] proposed
multiple approaches for extending the connectivity of CNN
to take advantage of the spatio-temporal information. Results
show that CNN can generate strong improvement over hand-
crafted features. However, the multiple frame models showed
a modest improvement compared to the single-frame model.
Next, Simonyan et al. [35] proposed a two stream CNN
network for video classification. One network analyzes the
spatial information while the second analyzes the optical flow
field. Their approach generates significant improvement over
the single frame model of [34].

Tran et al. [26] presented the first single stream CNN that in-
corporate both spatial and temporal information at once. Their
approach takes multiple frames as input and examines them
with 3D spatio-temporal convolutional filters. They handle the
problem of activity recognition and performed evaluation on
the UCF101 dataset. They outperformed all previous work,
including [34], [35]. In addition, their technique is fast as does
not require optical flow estimation.

Our solution is a full Shot Boundary Detection (SBD) sys-
tem consisting of a CNN-based classification step, a merging
step and a post-processing step. At the core of our CNN-
classification is a spatio-temporal architecture inspired by Tran
et al. [26]. Unlike Tran et al. [26], however, our architecture
uses batch normalization. Furthermore, our solution contains
a component for generating very large well annotated data-
sets for training our SBD. Results show that all components
of our solution, including dataset generation and our full SBD
system, play an important role in outperforming the state of
the art, both in detection accuracy and processing speed.
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Fig. 3. Overview of our Shot Boundary Detection (SBD) system. A video is divided into segments of 16 frames with an overlap of 8. Each segment is fed
to a 3D CNN (see Table I). The output of fc8 is fed to an SVM and labels are assigned. Consecutive segments with the same labeling are merged. Finally,
false alarms of gradual transitions are reduced through a histogram-driven temporal differencing.

Fig. 4. Our process of data generation. Here, red arrows refer to data fed to CNN training. We first use our synthetic data SBD Syn and some real data
(T2005 and Baraldi et al.) to train our solution. The model runs on 2007t/d, 2008 and 2009. We manually correct gradual detections into sharp, gradual and no
transitions. This generates our bootstrapping data SBD BT. We train the final solution using both SBD Syn and SBD BT, and optionally T2005 and Baraldi
et al. .

III. OUR APPROACH

A. Algorithm Design

We present a technique for automatic detection and classifi-
cation of shot boundaries. We name our technique DeepSBD.
A video is divided into segment of frames. Each segment is
assigned one of three labels: 1) sharp transition, 2) gradual
transition or 3) no transition. We use segments of length 16,
with an overlap of 8. Each segment is fed to a deep 3D-
CNN that analysis both spatial and temporal information. Our
network, C3D sbd, is inspired by [26] and is trained from
scratch for shot boundary detection. The last feature layer
is fed to an SVM classifier. This gives the first labeling
estimate. Consecutive segments with the same labeling are
merged and the result is passed to a post-processing step.
The step reduces false positives with little motion. For such
segments, we estimate the color histogram of the first and end
frame. We measure the Bhattacharyya distance between these
histograms. If the distance is small, we declare this segment
as no-transition. We use an OpenCV implementation for both
color histogram and Bhattacharyya distance, which is very fast.

Figure 3 shows an overview of our detection system. Our
network, C3D sbd, consists of five 3D convolutional layers
(see Table I). All convolutional layers are followed by Rec-
tified Linear Unit (ReLU) and pooling layers. The first two
convolutional layers are followed by Local Response Normal-
ization (LRN). Two fully connected layers exist, fc6 and fc7,
each containing 2049 neurons. The last fully connected layer
fc8 contain only 3 neurons, one for each class (sharp, gradual
and no transition). In comparison to [26], C3D sbd uses batch
normalization after the first two convolutional layers.

Layer Kernel Feature map Followed
(t×y×x×c)×f dimension by

Data - 20×3×16×112×112
Conv1 (3×3×3×3)×96 20×96×14×55×55 ReLU

LRN
Pool1 - 20×96×12×27×27
Conv2 (3×3×3×96)×256 20×256×12×29×29 ReLU

LRN
Pool2 - 20×256×10×14×14
Conv3 (3×3×3×256)×384 20×384×10×14×14 ReLU
Conv4 (3×3×3×384)×384 20×384×10×14×14 ReLU
Conv5 (3×3×3×384)×256 20×256×10×14×14 ReLU
Pool5 - 20×256×8×7×7
Fc6 (8×7×7×256)×2048 20×2048×1×1×1 ReLU

Drop 0.5
Fc7 2048×2048 20×2048×1×1×1 ReLU

Drop 0.5
Fc8 2048×3 20×3×1×1×1

Softmax Label -
TABLE I

THE MODEL PARAMETERS OF C3D SBD. IN COMPARISON TO [26],
C3D SBD USES BATCH NORMALIZATION.

B. Dataset Generation

Training an SBD CNN requires a large and well-annotated
dataset. We present two datasets, SBD Syn (Table II) and
SBD BT (Table III). SBD Syn is generated synthetically
while SBD BT is generated in a way to improve detector’s
precision, through bootstrapping. Figure 4 shows the process
of generating both datasets. We first use SBD Syn with T2005
and Baraldi et al. to train from scratch our solution. We run
this solution on data from T2007t/d, T2008 and T2009. Due to
the massive size of these datasets, however, we only examine
segments originally annotated as any form of transition. Note
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that original annotations here do not distinguish between sharp
or gradual. We closely examine segments detected as graduals.
We manually filter them into three classes: gradual, sharp
and no transitions. The no-transition represent complicated
hard-negative cases such as illumination variation and fast
motion (see Figure 5). Finally, we train from scratch a final
solution using both SBD Syn and SBD BT. We optionally
use T2005 and Baraldi et al. to further improve performance.
Results show that SBD BT has a great impact in reducing
false detections and improving the overall performance. The
supplementary material shows images from the datasets of
SBD Syn and SBD BT in Figure 1 and Figure 2.

SBD Syn: Table II shows the content of SBD Syn. Images
from this dataset is shown in the supplementary material
(Figure 1). The dataset is generated synthetically through
image compositing models [36]. A transition is modeled as
a linear combination between the underlying shots

It(x) = αt(x)Bt(x) + (1− αt(x))Ft(x) (1)

Here, It denotes the observed frame at time t, while B and F
are the content from the previous and next shots respectively.
α is the mixing parameter between both shots while x denotes
image pixels. The values and distribution of α define the type
of shot transition. If no transition exist, then (αt, αt+1) =
(1, 1). A sharp transition, however, have a sudden temporal
change with (αt, αt+1) = (1, 0). For gradual transitions, α
changes over time from 1 to 0. This change occurs over a set
of frames and hence (αt, .....αt +N) = (1, ., ., 1− t/N, ., 0).
N is the transition duration and t is the frame index where
t = 0 denotes the last frame of the previous shot. Here, the in-
between α values are non-binary. This generates the dissolve
nature of most gradual transitions (Figure 1). For wipes, α is
spatially-varying aswell as temporally-varying.

To generate SBD Syn we need to define F , B and α in
Eq. 1. F and B must not contain any shot transitions. We use
the T2007t/d, T2008, T2009 and their annotations to find such
frames. We sample F and B in a way to ensure a large offset
from the nearest transition. Sharp transitions are generated by
applying Eq. 1 with (αt, αt+1) = (1, 0). Gradual transition
generation, however, is more complex. For SBD Syn we
focus on dissolve gradual generation. We randomly select the
transition duration N , where N <= 16. We also randomly
select the transition start and end frames for both B and F .
We draw N α samples, where α is modeled with a uniform
distribution. We sort all α values in descending order and apply
Eq. 1 for each of the N frames.

We train C3D sbd using balanced data for sharp, gradual
and no-transition. We experimented with different data sizes.
We found 40,000 segments for each class generate good
results. We also train the SVM for sharp and gradual using
110,000 segments for each. For CNN, we use a step learning
policy. Learning rate starts with a value of 0.0001 and is
reduced gradually by a factor of 10 every two epochs. We use
a batch size of 20, and train the model for 6 epochs. That is
two epochs for each learning rate of 1e-4, 1e-5, and 1e-6. The
momentum value is 0.9. All these values were set empirically
to optimize performance. We also found empirically that SVM
works better with features from fc8 as opposed to fc6 and fc7.

Datasets Synthetic Gradual Synthetic Real
T2007t 19398 19439
T2007d 13656 19607
T2008 39047 32456
T2009 44158 32578
Total 116259 104080

TABLE II
OUR DATASET SBD SYN IN TERMS OF NUMBER OF SEGMENTS (16
FRAMES EACH). SBD SYN IS SYNTHETICALLY GENERATED FROM

T2007T/D,2008,2009 USING IMAGE COMPOSITING. THE DATA CONTAINS
A BALANCED PORTION OF NO-TRANSITIONS.

Transitions Number of segments
No-transition 4,427
Gradual 11,249
Sharp 359
Total 16,035

TABLE III
OUR SBD BT DATASET. THE NO-TRANSITION REPRESENT COMPLEX

HARD-NEGATIVES (FIGURE 5). WHEN INCLUDED IN TRAINING,
PRECISION IS SIGNIFICANTLY IS IMPROVED.

IV. RESULTS

We performed experiments on real data as well as on
synthetically generated data. We examined 4,683,552 frames,
81.8% of which are real. Our work is the largest SBD
evaluation to date for one algorithm. We asses performance
quantitatively using precision (P), recall (R) and F-score (F).
Here, we use the standard TRECVID evaluation metric [1]
where a transition is detected if it overlaps with the annotations
by at least one frame. We report the per-transition perfor-
mances. During comparison we highlight the best performing
technique in bold. To account for possible mis-annotations and
system error in such large experiment, we claim a technique
is superior only if it achieves more then 0.5% P, R, or
F improvement over the second best performing technique.
Techniques with 0.5% difference are claimed as competitive.
We train two models, both using our datasets DSB Syn and
SBD BT. One of them uses few real data from T2005 and
Barladi et al. , denoted by r, at most 7% of the total training
data. Both models are competitive to each other. We report
results with r in the paper and report the other model in the
supplementary material.

We compare against the latest techniques (Lu et al. [13],
Priya et al. [12], Apostolidis et al. [28] and Berladi et al. [29])
as well as the best performers in the 7 years of the TRECVID
challenge (Yuan et al. [21] and Liu et al. [22]). These tech-

Fig. 5. No-transition samples from our bootstrapping data (SBD BT).
They contain complex cases such as fast motion, occlusion and illumination
variation. These cases can be misclassified as graduals. More examples are in
the supplementary material, Figure 2.
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videos names
T2001a BOR10 001, BOR10 002, NAD57, NAD58,

anni001, anni005, anni006, anni007, anni00,
anni009, anni010

T2001b BOR03, BOR08, BOR10, BOR12, BOR17
TABLE IV

VIDEOS OF T2001A AND T2001B

niques show the compromise between detection accuracy and
processing speed commonly present in SBD. Lu et al. [13]
is the fastest of all, but generates conservative performance.
Priya et al. [12], Liu et al. [22] and Yuan et al. [21] generate
better performance. However, at the cost of heavy optical
flow computation. Our results show that DeepSBD optimizes
both detection accuracy and processing speed over all current
techniques. That is, we outperform gradual detection, generate
competitive performance for sharp transitions and produce
significant improvement in wipes detection. In addition, we
are up to 11 times faster than the state of the art. More detailed
results are reported in the supplementary material.

A. Real Sequences

We evaluated our technique on all seven TRECVID releases,
from 2001 to 2007. They have a total of 3,831,648 frames,
with 8,545 gradual and 14,602 sharp transitions. No test data
was included in the training. Table V shows performance
evaluation on 6 sequences commonly used in Lu et al. [13]
and Priya et al. [12]. The sequences are from T2001a (see
Table IV) and present challenging videos from outer-space.
The videos include cases such as global illumination variation,
smoke, fire and fast non-rigid motion. We outperform Lu et
al. in all sequences for both gradual and sharp transition.
Furthermore, we outperform Priya et al. in the vast majority
of sequences in both transition types.

Table VI compares our technique against Priya et al. [12]
on T2007. Note that [12] used a slightly different approach
for evaluation than the one recommended by TRECVID [1].
TRECVID recommends estimating the average performance
per transition. However, [12] estimated the average perfor-
mance per sequence. Furthermore, Priya et al. tested on 17
sequences, 7 of which were included in their training set.
This biases the results towards Priya et al. [12]. Hence, for
fair comparison these 7 sequences should be removed from
the 17 test sequences and the comparison should be done on
at most 10 sequences. To illustrate this point, we examined
our technique with different sizes of the test dataset. Each
column of Table VI shows the performance with different
size of the test data. With 10 test sequences, our technique
outperforms Priya et al. [16] significantly in gradual transitions
(0.88 vs. 0.76 f-score) and generates competitive results for
sharp transitions. Furthermore, we still outperform Priya et
al. even with a test-set of 14 sequences. Here, however, at
least 4 sequences are included in Priya et al. training and
hence results are biased towards Priya et al. Including these
videos in our training is expected to improve performance
even further. The spatio-temporal aspect of our solution allow
us to generate these high detection accuracy results without

explicitly estimating optical flow. Our experimental results
showed that just relying on the spatial information generates
very poor performance.

Table VII evaluates DeepSBD on T2004, 2005, 2006 and
2007. To test on 2005, we removed it from our training. We
compare against the best TRECVID performers as well as Lu
et al. [13]. We significantly outperform Lu et al. in T2007.
Furthermore, we outperform the best TRECVID performers,
Liu et al. [22] and Yuan et al. [21] on all four datasets.
Table VIII evaluates DeepSBD on the remaining TRECVID
datasets. T2001b and 2002 annotations contain significant
overlap between sharp and gradual transitions. Hence, for
them we show the overall combined transitions performance.
Furthermore, T2003 is missing 4 videos and hence we could
not compare against the reported TRECVID performance.
In all sequences we generate good performance. T2001b
and 2002 sequences contain strong noise and jitter. Yet, our
technique was robust enough to handle such artifacts. Figure 6
(a) shows the precision-recall curves for our DeepSBD on all
real TRECVID sequences. Table XVI shows the combined f-
score for the RAI dataset [37]. Here, we compare against the
techniques of Apostolidis et al. [28] and Berladi et al. [29].
Results show that we significantly outperform both techniques.
The supplementary material (Table II-XVI) shows the per
sequence results for each of the TRECVID and RAI dataset
examined by our technique. This includes much more statistics
e.g. true positives (TP), false positives (FP), false negative
(FN) and so on.

Table X examines different test configurations for
DeepSBD. SVM on fc8 generates better results than on
fc6. The post-processing (pp) step improves the performance,
especially for T2007. The best performance is obtained with
fc8+svm+pp. Figure 7 shows failure cases in gradual transi-
tion detection. Too long transitions can get misclassified as
False negatives (FN). Here, no enough temporal difference
is captured over our 16 frames window. FN can also be
generated when both shots have similar texture and color. False
positives are largely generated by computer graphics content.
Such content have a gradual-like effect. However, they are not
semantically classified as a shot transition.

B. The importance of our datasets

Table I shows the significance and importance of our
datasets SBD Syn and SBD BT in generating high accuracy
detections. We evaluate DeepSBD on T2007 with six different
training sets: 1) R 3-5 2) R 3-6 3) R 3-6 + BT, 4) S +
r, 5) S + r + BT and 6) and S + BT. S and BT is short
for our datasets SBD Syn and SBD BT. R 3-6 represent
TRECVID real videos and annotations from 2003 to 2006.
r is T2005 and Baraldi [27]. Results show that training with
R 3-5 generate poor performance. In addition, it limits us
to testing on just 3 data-sets (T2001a, T2006 and T2007).
Adding T2006 to training improves performance but limits
our testing further to 2 data-sets (T2001a and T2007). Adding
our bootstrapping data SBD BT (BT) improves precision and
performance significantly. This shows the high quality and
importance of our SBD BT. The best performance, however, is
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D1-anni5 D2-anni6 D3-anni9 D4-anni10 D5-NAD57 D6-NAD58
Lu et al. [13]
Abrupt - 0.905 0.754 0.892 - 0.962
Gradual - 0.817 0.824 0.734 - 0.884
Priya et al. [12]
Abrupt 0.85 0.911 0.842 0.897 0.945 0.945
Gradual 0.938 0.885 0.873 0.822 0.809 0.885
DeepSBD (ours)
Abrupt 0.818 0.988 0.961 0.918 0.957 0.904
Gradual 0.945 0.885 0.919 0.855 0.917 0.914

TABLE V
DEEPSBD EVALUATION ON 6 CHALLENGING SEQUENCES FROM TRECVID 2001 (D1-D6). OUR TECHNIQUE OUTPERFORMS LU ET AL. AND PRIYA ET

AL. [12] IN THE VAST MAJORITY OF SEQUENCES. THE IMPROVEMENT IS MORE SIGNIFICANT IN GRADUAL TRANSITIONS.

Size of test-data (in sequences) 9 10 11 12 13 14 15 16 17
Priya et al. [12]
Abrupt 0.9733 0.974 0.9748 0.9742 0.9737 0.9741 0.9733 0.9737 0.974
Gradual 0.775 0.7578 0.7677 0.7742 0.7811 0.7825 0.7802 0.7726 0.78
DeepSBD (ours)
Abrupt 0.9729 0.9749 0.9743 0.974 0.9743 0.9749 0.9733 0.9713 0.9726
Gradual 0.8962 0.8774 0.8613 0.8395 0.8171 0.797 0.7758 0.7507 0.7259

TABLE VI
PER-SEQUENCE F-SCORE ON T2007. WE COMPARE AGAINST PRIYA ET AL. [12] ON TEST-SETS OF DIFFERENT SIZES. SINCE PRIYA ET AL. [12] IS

TRAINED ON 7 OUT OF THE TOTAL 17 TEST SEQUENCES, COMPARISON SHOULD BE DONE ON AT MOST 10 SEQUENCES. RESULTS SHOW WE
SIGNIFICANTLY OUTPERFORM PRIYA ET AL. WITH A TEST-SET OF 10 SEQUENCES. HERE, OUR GRADUAL TRANSITIONS DETECTOR IS MORE THAN 12%
BETTER THAN PRIYA ET AL. IN F-SCORE, A SIGNIFICANT IMPROVEMENT DUE TO OUR CNN SOLUTION. FURTHERMORE, WE STILL OUTPERFORM PRIYA
ET AL. WITH A TEST-SET SIZE UP TO 14 SEQUENCES. HERE, HOWEVER, AT LEAST 4 SEQUENCES WERE INCLUDED IN PRIYA ET AL. WHICH BIASES THE

RESULTS TOWARDS PRIYA ET AL. INCLUDING THESE VIDEOS IN OUR TRAINING IS EXPECTED TO BOOST OUR PERFORMANCE EVEN FURTHER.

Fig. 6. (a) Precision-Recall of DeepSBD for all TRECVID sequences. (b) Precision-Recall of DeepSBD for wipes. Here, we compare against two
implementations of Liu et al. [22] wipe detector. The first implementation examines all frames of UCF101 SBD and ‘+’ examines only frames not classified
as sharp nor gradual by DeepSBD. We significantly outperforms both approaches.

T2004 T2005 T2006 T2007
Best TRECVID
performers [1]
Abrupt 0.929 0.935 0.899 0.972
Gradual 0.806 0.786 0.814 0.753
Lu et al. [13]
Abrupt - - - 0.761
Gradual - - - 0.618
DeepSBD (ours)
Abrupt 0.926 0.934 0.895 0.971
Gradual 0.866 0.844 0.827 0.776

TABLE VII
COMPARING DEEPSBD AGAINST DIFFERENT TECHNIQUES. WE COMPARE
AGAINST TRECVID BEST PERFORMERS, LIU ET AL. [22] FOR 2006/2007

AND AGAINST YUAN ET AL. [32] FOR 2004/2005. WE ALSO COMPARE
AGAINST THE LATEST NO OPTICAL FLOW TECHNIQUE OF LU ET AL. [13].

WE OUTPERFORM ALL TECHNIQUES ON ALL DATASETS.

T2001a T2001b T2002 T2003
DeepSBD
Abrupt 0.931 - - 0.866
Gradual 0.904 - - 0.759
Overall 0.918 0.748 0.865 0.8337

TABLE VIII
EVALUATING DEEPSBD ON T2001A, 2001B, 2002 AND 2003.

Method in [28] Method in [29] Ours
RAI [37] 0.84 0.84 0.94

TABLE IX
PROCESSING THE RAI DATASET [37] WITH DIFFERENT TECHNIQUES.

HERE WE SHOW THE COMBINED F-SCORE OF THE OVERALL DETECTION.
OUR TECHNIQUE SIGNIFICANTLY OUTPERFORMS BOTH APOSTOLIDIS ET

AL. [28] AND BERLADI ET AL. [29].

generated when both our datasets SBD Syn and SBD BT with
r are used for training. In addition to the highest performance,
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fc6+svm fc8+svm fc8+svm+pp fc8+pp
TR2001a
Gradual 0.882 0.906 0.904 0.906
Sharp 0.931 0.931 0.931 0.923
TR2006
Gradual 0.83 0.841 0.844 0.843
Sharp 0.887 0.895 0.895 0.895
TR2007
Gradual 0.71 0.732 0.776 0.776
Sharp 0.955 0.968 0.971 0.973

TABLE X
COMPARING DEEPSBD WITH DIFFERENT SETTINGS. THE BEST

PERFORMANCE ON ALL ALL DATASETS IS OBTAINED WITH FC8 FEATURES
+ SVM + POST-PROCESSING (PP). SOME OTHER SETTINGS ARE

COMPETITIVE (SEE BOLD).

Fig. 7. Failure cases in gradual transition detection.

this option allow us to test on all TRECVID videos, except
T2005. Removing r from the training generates the second
best performance. This, however, allow us to test on all
TRECVID videos, including T2005. The experiment shows the
significance and importance of our data-sets. We performed
this experiment on several test sets and we found S + r
+ BT and S + BT are always the top and competitive to
each other (see supplementary material, Table. 1). This shows
the significance of our datasets and their generation process
(Section III-B).

C. Controlled Experiments

We generated a synthetic test-set. Our dataset contain 53,324
segments, divided equally between gradual, sharp, wipes and
no-transitions. Each segment is 16 frames long. We generated
gradual and sharp transition using image compositing as we

P R F P R F
R 3-5 0.495 0.665 0.568 0.894 0.872 0.883
R 3-6 0.683 0.683 0.683 0.957 0.95 0.953
R 3-6 + BT 0.755 0.705 0.729 0.961 0.961 0.961
S + r 0.722 0.63 0.673 0.979 0.955 0.967
S + r + BT 0.799 0.753 0.776 0.973 0.969 0.971
S + BT 0.779 0.714 0.745 0.969 0.966 0.968

TABLE XI
TRAINING DEEPSBD WITH DIFFERENT DATASETS. RESULTS SHOW THAT

BEST PERFORMANCE IS GENERATED WHEN OUR BOTH SBD SYN (S) AND
SBD BT (BT) AND R ARE USED. REMOVING ANY REAL SEQUENCES (r)

FROM OUR DATASETS GENERATES THE SECOND BEST PERFORMANCE
(S+BT). THE ADVANTAGE OF THIS OPTION IS ALLOWING US TO TEST ON

ALL TRECVID VIDEOS, INCLUDING T2005 (TABLE VII). THE TABLE
ALSO SHOWS SBD BT CLEARLY IMPROVES THE PRECISION AND

OVERALL PERFORMANCE.

Fig. 8. Samples of the α mattes used for generating the wipes of
UCF101 SBD. Examples of the generated wipes are shown in the supple-
mentary material in Figure 3.

Transition Type Precision Recall F-measure
Gradual 0.989 0.995 0.992
Sharp 0.984 0.999 0.992
Wipes 0.976 0.936 0.956

TABLE XII
EVALUATING DEEPSBD ON OUR SYNTHETIC DATASET UCF101 SBD. IN

TOTAL UCF101 SBD HAS 53, 253 SEGMENTS, DIVIDED EQUALLY
AMONG ALL CLASSES (NORMAL, GRADUAL, SHARP AND WIPES). EACH

SEGMENT HAS 16 FRAMES. DEEPSBD GENERATES A VERY HIGH
PERFORMANCE IN ALL CLASSES.

did for SDB Syn (see Eq. 1). Here, we constrain the shots
to come from two different UCF101 videos [38]. We present
the first large wipes dataset, containing 1.1 million wipe
frames (20% test). They are also generated using Eq. 1. Here,
however, the opacity values α have more complicated spatio-
temporal patterns than sharp and gradual transitions. Figure 8
shows some of the 196 α mattes we used. The supplementary
material, Figure 3, show frames from our wipes dataset. We
call our synthetic UCF dataset UCF101 SBD.

We train the model using SBD Syn, SBD BT and the
synthetic wipes. This model generates 4 classes. Table XII
evaluates DeepSBD on UCF101 SBD. We generate high
performance for all classes, including wipes. Performance is
higher than the ones previously reported on the TRECVID se-
quences. This could be due to the highly accurate annotations
of UCF101 SBD. Figure 6 (b) compares our wipe detector
against the state of the art of Liu et al. [22]. We evaluate
Liu et al. using two strategies. The first examines all frames
of UCF101 SBD. The second, ‘+’, examines only frames not
detected as gradual nor sharp transitions by DeepSBD. Our
technique outperform both approaches significantly.

D. Processing Speed

We examined a TRECVID video of duration 4,096 seconds
containing 102,400 frames. We ran the test-phase of DeepSBD
with different batch sizes as input. The GPU performs n

Real-time speed-up factor
DeepSBD 19.3
Liu et al. [1], [22] 3.24
Priya et al. [12] 1.76
Yuan et al. [32] 2.43

TABLE XIII
REAL-TIME SPEED-UP FACTOR FOR DIFFERENT SHOT BOUNDARY

DETECTION TECHNIQUES. WE ARE FASTER THAN ALL TECHNIQUES WITH
A FACTOR UP TO 11.
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iterations until all 102,400 frames are processed. The smaller
the batch size, the more iterations required and hence the more
time required to process all frames. However, the less memory
required. Experiments shows that the processing speed gain
from 10 to 100 batch size is not significant. That is between
16-19.3 real-time speed up factor. We use Titan X, a GPU
commonly used for deep learning applications. Table XIII
compares the processing speed of different SBD techniques.
In comparison with the best performing optical-flow based
techniques, we are 11 times faster than Priya et al. [12], 6
times faster than Liu et al. [22] and 9.65 times faster than Yuan
et al. [32]. The supplementary material shows more analysis
of the processing speed in Figure 4-5 (Section II).

E. Deep Analysis on Network Responses

We randomly selected two segments (16 frames) from
UCF101 and synthetically generated a sharp and gradual
transition using Eq. 1. We treated one of the two sequences as
no-transition. We examined all segments using DeepSBD. Fig-
ure 9 shows the heat map of some Conv5 filter responses for
each transition type. The filters are stacked next to each other,
in blocks. The green grid shows filters’ borders. Time is the y-
axis and space is the x-axis. Vertical space is averaged over the
horizontal space. Sharp transitions have abrupt responses in the
time axis in form of bright horizontal lines. Gradual transitions
have blurred responses in the time axis. No transitions do not
show a specific response pattern. The patterns are consistent
on several other segments. The supplementary material shows
more of such results in Figure 6 (Section III).

V. CONCLUSION

We presented the first CNN technique for shot boundary
detection. Current techniques compromise between detection
accuracy and processing speed and use hand-crafted features.
We exploit big data to optimize both accuracy and speed. This
is important as SBD is a common pre-processing step for
video manipulation. We present two large datasets containing
3.57 million frames. One set is generated synthetically while
the other is carefully annotated through bootstrapping. We
outperform state of the art gradual transition detections, gener-
ate competitive performance in sharp transitions and produce
significant improvement in wipes detections. Our approach is
up to 11 times faster than the state of the art. Future work
can examine computer graphics content more closely. We will
release our datasets and code to encourage future research.
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I. OUR DATA-SETS

Figure 1 shows samples from the gradual transitions class
of our dataset (SBD Syn). Our data is synthetically generated
through image compositing. It is diverse, containing a wide
variety of colors, texture, objects, motion and so on. Figure 2
shows hard negative samples from our bootstrapping data
(SBD BT). The samples contain challenging cases that com-
monly confuse gradual transition detectors e.g. fast motion,
fast zoom in, illumination changes, object occlusion, strong
lighting, and so on. Figure 3 shows 10 sequences from our
synthetically generated wipes dataset. The sequences show
some variety of the alpha mattes used to generate wipes.

Tab. I shows the significance and importance of our syn-
thetic SBD Syn and bootstrapping SBD BT datasets in gen-
erating high accuracy detections. We evaluate our technique,
DeepSBD, on different datasets with six different training sets:
1) R 3-5 2) R 3-6 3) R 3-6 + BT, 4) S + r, 5) S + r + BT and
6) and S + BT. S and BT is short for our datasets SBD Syn
and SBD BT. R 3-6 represent TRECVID real videos and an-
notations from 2003 to 2006. r is T2005 and Baraldi. Results
show that training with R 3-5 generate poor performance. In
addition, it limits us to testing on just 3 data-sets (T2001a,
T2006 and T2007). Adding T2006 to training improves per-
formance but limits our testing further to 2 data-sets (T2001a
and T2007). Adding our bootstrapping data SBD BT (BT)
improves precision and performance significantly. This shows
the high quality and importance of our SBD BT. The best
performance, however, is generated when both our datasets
SBD Syn and SBD BT with r are used for training. In
addition to the highest performance, this option allow us to test
on all TRECVID videos, except T2005. Removing r from the
training generates a competitive performance. This, however,
allow us to test on all TRECVID videos, including T2005.
The experiment shows the significance and importance of our
data-sets. We performed this experiment on several test sets
and we found S + r + BT and S + BT are always the top and
competitive to each other. This shows the significance of our
datasets.

Tab. II-XVI shows detailed per video results for different
testing sets. For each testing dataset, we report the results using
two different training-sets (S+r+BT and S+BT). We show: the
number of transitions (#T), true positives (TP), false positives
(FP), false negatives (FN), precision (P), recall (R) and F-
measure (F).

II. PROCESSING SPEED

Figure 4-5 examines the processing speed (test-phase) of
our technique with different batch sizes as input. We ran our
model on 6,394 segments. Each segment is 16 frames long, and
hence our test-set contains 102,304 frames. Figure 4 reports
the total processing speed in seconds while Figure 5 reports the
real-time speed up factor. Tab. XVII shows detailed analysis
of this experiment. For each batch size we ran our technique
twice to ensure consistency. Results show that the processing
speed gain from 10 to 100 batch size is not significant. Thats
between 16-19.3 real-time speed up factor.

III. DEEP ANALYSIS ON NETWORK RESPONSES

Figure 6 visualizes the feature response of our technique.
We show the visualization of two different image sequences.
For each sequence, we randomly selected two segments (16
frames) from UCF101 and synthetically generated a sharp and
gradual transition using image compositing models. We treated
one of the two sequences as no-transition. We examined all
segments using our technique, DeepSBD. Figure 6 shows the
heat map of some Conv5 filter responses for each transition
type. The filters are stacked next to each other, in blocks.
The green grid shows some filters’ borders. Time is the y-axis
and space is the x-axis. Vertical space is averaged over the
horizontal space. Sharp transitions have abrupt responses in the
time axis in form of bright horizontal lines. Gradual transitions
have blurred responses in the time axis. No transitions do not
show a specific response pattern. The learned patterns of the
three classes capture meaningful and discriminative informa-
tion for the different types of shot transitions. Such information
generate high detection accuracy as shown through out our
results.
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Fig. 1. 100 frames from the gradual transition class of our dataset. This data is generated synthetically through image compositing.
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Fig. 2. Hard negative samples from our bootstrapping dataset. We carefully selected these samples through a semi-automated process. They represent
complicated cases such as illumination variation, fast motion, occlusion and so on.
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Fig. 3. 10 sequences from our synthetically generated wipes data-set. Each row shows frames from one sequence. The dataset is generated using image
compositing models with a wide variety of alpha mattes.
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P R F P R F
T2001a
R 3-5 0.693 0.78 0.734 0.863 0.691 0.768
R 3-6 0.762 0.814 0.787 0.93 0.891 0.91
R 3-6+BT 0.917 0.753 0.827 0.96 0.923 0.941
S+r 0.782 0.851 0.815 0.926 0.92 0.923
S+r+BT 0.951 0.861 0.904 0.927 0.936 0.931
S+BT 0.934 0.912 0.923 0.979 0.904 0.94
T2006
R 3-5 0.641 0.747 0.69 0.691 0.838 0.758
S+r 0.834 0.744 0.786 0.86 0.873 0.866
S+r+BT 0.888 0.804 0.844 0.863 0.93 0.895
S+BT 0.827 0.834 0.83 0.876 0.869 0.872
T2007
R 3-5 0.495 0.665 0.568 0.894 0.872 0.883
R 3-6 + 0.683 0.683 0.683 0.957 0.95 0.953
R 3-6+BT 0.755 0.705 0.729 0.961 0.961 0.961
S+r 0.722 0.63 0.673 0.979 0.955 0.967
S+r+BT 0.799 0.753 0.776 0.973 0.969 0.971
S+BT 0.779 0.714 0.745 0.969 0.966 0.968
T2003
S+r 0.735 0.703 0.718 0.899 0.837 0.867
S+r+BT 0.779 0.741 0.759 0.892 0.842 0.866
S+BT 0.741 0.804 0.771 0.898 0.846 0.871
T2004
S+r 0.868 0.774 0.818 0.928 0.929 0.929
S+r+BT 0.918 0.819 0.866 0.923 0.929 0.926
S+BT 0.888 0.884 0.886 0.941 0.918 0.929
T2005
S+BT 0.791 0.866 0.827 0.927 0.941 0.934

TABLE I
TRAINING OUR TECHNIQUE DEEPSBD WITH DIFFERENT DATASETS.

R 3-5 REPRESENT ALL TRECVID VIDEOS EXCEPT 2001A, 2006 AND
2007. RESULTS SHOW THAT THE BEST PERFORMANCE IS ALWAYS

GENERATED WHEN BOTH OUR SYNTHETIC (S) AND BOOTSTRAPPING (BT)
DATASETS ARE USED (SEE S+R+BT AND S+BT). HERE, R IS A VERY

SMALL PORTION OF REAL VIDEOS (T2005 AND BARALDI). THE
ADVANTAGE OF USING S+BT IS ALLOWING US TO TEST ON ALL

TRECVID VIDEOS, INCLUDING T2005. FINALLY, OUR BOOTSTRAPPING
DATA BT CLEARLY IMPROVES THE PRECISION AND OVERALL

PERFORMANCE.

Gradual and Sharp
Video TP FP FN P R F

BOR03 237 32 5 0.881 0.979 0.928
BOR08 456 8 75 0.983 0.859 0.917
BOR10 58 84 94 0.408 0.382 0.395
BOR12 117 5 19 0.959 0.86 0.907
BOR17 77 137 171 0.36 0.31 0.333
Total 945 266 364 0.78 0.722 0.75

TABLE II
DETAILED PER VIDEO RESULTS OF T2001B. HERE, WE USE S+R+BT FOR
TRAINING OUR MODEL. WE REPORT THE COMBINED RESULTS FOR BOTH

GRADUAL AND SHARP TRANSITIONS. WE SHOW THE TRUE POSITIVES
(TP), FALSE POSITIVES (FP), FALSE NEGATIVES (FN), PRECISION (P),

RECALL (R) AND F-MEASURE (F).

Gradual and Sharp
Video TP FP FN P R F

BOR03 240 30 2 0.889 0.992 0.938
BOR08 500 7 31 0.986 0.942 0.963
BOR10 54 82 98 0.397 0.355 0.375
BOR12 114 5 22 0.958 0.838 0.894
BOR17 66 106 182 0.384 0.266 0.314
Total 974 230 335 0.809 0.744 0.775

TABLE III
DETAILED PER VIDEO RESULTS OF T2001B. HERE, WE USE S+BT FOR

TRAINING OUR MODEL. WE REPORT THE COMBINED RESULTS FOR BOTH
GRADUAL AND SHARP TRANSITIONS. WE SHOW THE TRUE POSITIVES
(TP), FALSE POSITIVES (FP), FALSE NEGATIVES (FN), PRECISION (P),

RECALL (R) AND F-MEASURE (F).

Fig. 4. Processing time in seconds of our technique. We report the results
for different batch sizes as input.

Fig. 5. Real-time speed factor of our technique. We report the results for
different batch sizes as input.
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Gradual Sharp
Video #T TP FP FN P R F #T TP FP FN P R F

BOR10 001 11 11 0 0 1 1 1 0 0 0 0 - - -
BOR10 002 11 9 0 2 1 0.818 0.9 0 0 0 0 - - -

NAD57 25 22 1 3 0.957 0.88 0.917 45 45 4 0 0.918 1 0.957
NAD58 44 37 0 7 1 0.841 0.914 40 33 0 7 1 0.825 0.904
anni001 8 6 0 2 1 0.75 0.857 0 0 1 0 0 - -
anni005 27 26 2 1 0.929 0.963 0.945 39 36 13 3 0.735 0.923 0.818
anni006 31 27 3 4 0.9 0.871 0.885 42 41 0 1 1 0.976 0.988
anni007 5 4 0 1 1 0.8 0.889 5 5 0 0 1 1 1
anni008 13 12 0 1 1 0.923 0.96 2 2 0 0 1 1 1
anni009 64 57 3 7 0.95 0.891 0.919 40 37 0 3 1 0.925 0.961
anni010 56 50 11 6 0.82 0.893 0.855 98 84 1 14 0.988 0.857 0.918

Total 295 261 20 34 0.929 0.885 0.906 311 283 19 28 0.937 0.91 0.923
TABLE IV

DETAILED PER VIDEO RESULTS OF T2001A. HERE, WE USE S+R+BT FOR TRAINING OUR MODEL. WE REPORT THE RESULTS FOR BOTH GRADUAL AND
SHARP TRANSITIONS. FOR EACH CLASS WE SHOW THE NUMBER OF TRANSITIONS (#T), TRUE POSITIVES (TP), FALSE POSITIVES (FP), FALSE

NEGATIVES (FN), PRECISION (P), RECALL (R) AND F-MEASURE (F).

Gradual Sharp
Video #T TP FP FN P R F #T TP FP FN P R F

BOR10 001 11 11 0 0 1 1 1 0 0 0 0 - - -
BOR10 002 11 10 0 1 1 0.909 0.952 0 0 0 0 - - -

NAD57 25 21 2 4 0.913 0.84 0.875 45 45 1 0 0.978 1 0.989
NAD58 44 39 0 5 1 0.886 0.94 40 35 0 5 1 0.875 0.933
anni001 8 6 0 2 1 0.75 0.857 0 0 0 0 - - -
anni005 27 27 1 0 0.964 1 0.982 39 35 5 4 0.875 0.897 0.886
anni006 31 27 5 4 0.844 0.871 0.857 42 39 0 3 1 0.929 0.963
anni007 5 5 0 0 1 1 1 5 5 0 0 1 1 1
anni008 13 13 0 0 1 1 1 2 2 0 0 1 1 1
anni009 64 60 2 4 0.968 0.938 0.952 40 36 0 4 1 0.9 0.947
anni010 56 50 9 6 0.847 0.893 0.87 98 84 0 14 1 0.857 0.923

Total 295 269 19 26 0.934 0.912 0.923 311 281 6 30 0.979 0.904 0.94
TABLE V

DETAILED PER VIDEO RESULTS OF T2001A. HERE, WE USE S+BT FOR TRAINING OUR MODEL. WE REPORT THE RESULTS FOR BOTH GRADUAL AND
SHARP TRANSITIONS. FOR EACH CLASS WE SHOW THE NUMBER OF TRANSITIONS (#T), TRUE POSITIVES (TP), FALSE POSITIVES (FP), FALSE

NEGATIVES (FN), PRECISION (P), RECALL (R) AND F-MEASURE (F).

Gradual and Sharp
Video TP FP FN P R F

01811a 60 7 4 0.896 0.938 0.916
6011 40 96 81 0.294 0.331 0.311
8024 85 22 21 0.794 0.802 0.798
8386 113 10 5 0.919 0.958 0.938
8401 26 5 5 0.839 0.839 0.839

10558a 122 1 8 0.992 0.938 0.964
23585a 149 10 16 0.937 0.903 0.92
23585b 103 3 1 0.972 0.99 0.981
34921a 70 4 5 0.946 0.933 0.94
34921b 91 10 8 0.901 0.919 0.91
36553 200 21 14 0.905 0.935 0.92
50009 44 28 14 0.611 0.759 0.677
50028 81 17 12 0.827 0.871 0.848

UGS01 164 8 12 0.953 0.932 0.943
UGS04 218 25 5 0.897 0.978 0.936
UGS05 21 6 9 0.778 0.7 0.737
UGS09 169 12 24 0.934 0.876 0.904
Total 1756 285 244 0.86 0.878 0.869

TABLE VI
DETAILED PER VIDEO RESULTS OF T2002. HERE, WE USE S+R+BT FOR
TRAINING OUR MODEL. WE REPORT THE COMBINED RESULTS FOR BOTH

GRADUAL AND SHARP TRANSITIONS. WE SHOW THE TRUE POSITIVES
(TP), FALSE POSITIVES (FP), FALSE NEGATIVES (FN), PRECISION (P),

RECALL (R) AND F-MEASURE (F).

Gradual and Sharp
Video TP FP FN P R F

01811a 60 7 4 0.896 0.938 0.916
6011 39 96 82 0.289 0.322 0.305
8024 96 29 10 0.768 0.906 0.831
8386 114 5 4 0.958 0.966 0.962
8401 30 8 1 0.789 0.968 0.87

10558a 125 1 5 0.992 0.962 0.977
23585a 159 8 6 0.952 0.964 0.958
23585b 103 4 1 0.963 0.99 0.976
34921a 71 6 4 0.922 0.947 0.934
34921b 91 11 8 0.892 0.919 0.905
36553 202 26 12 0.886 0.944 0.914
50009 53 29 5 0.646 0.914 0.757
50028 89 18 4 0.832 0.957 0.89

UGS01 171 12 5 0.934 0.972 0.953
UGS04 222 15 1 0.937 0.996 0.965
UGS05 26 21 4 0.553 0.867 0.675
UGS09 176 17 17 0.912 0.912 0.912
Total 1827 313 173 0.854 0.913 0.883

TABLE VII
DETAILED PER VIDEO RESULTS OF T2002. HERE, WE USE S+BT FOR

TRAINING OUR MODEL. WE REPORT THE COMBINED RESULTS FOR BOTH
GRADUAL AND SHARP TRANSITIONS. WE SHOW THE TRUE POSITIVES
(TP), FALSE POSITIVES (FP), FALSE NEGATIVES (FN), PRECISION (P),

RECALL (R) AND F-MEASURE (F).
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Gradual Sharp
Video #T TP FP FN P R F #T TP FP FN P R F

203 CNN 171 134 44 37 0.753 0.784 0.768 280 228 13 52 0.946 0.814 0.875
222 CNN 101 74 5 27 0.937 0.733 0.822 309 273 11 36 0.961 0.883 0.921
224 ABC 131 108 10 23 0.915 0.824 0.867 296 281 13 15 0.956 0.949 0.953
412 ABC 137 115 6 22 0.95 0.839 0.891 345 323 17 22 0.95 0.936 0.943
425 ABC 180 161 12 19 0.931 0.894 0.912 295 266 11 29 0.96 0.902 0.93
515 CNN 131 89 11 42 0.89 0.679 0.771 283 265 17 18 0.94 0.936 0.938
531 CNN 108 75 12 33 0.862 0.694 0.769 359 316 13 43 0.96 0.88 0.919
619 ABC 127 46 125 81 0.269 0.362 0.309 321 154 155 167 0.498 0.48 0.489

Total 1086 802 225 284 0.781 0.738 0.759 2488 2106 250 382 0.894 0.846 0.87
TABLE VIII

DETAILED PER VIDEO RESULTS OF T2003. HERE, WE USE S+R+BT FOR TRAINING OUR MODEL. WE REPORT THE RESULTS FOR BOTH GRADUAL AND
SHARP TRANSITIONS. FOR EACH CLASS WE SHOW THE NUMBER OF TRANSITIONS (#T), TRUE POSITIVES (TP), FALSE POSITIVES (FP), FALSE

NEGATIVES (FN), PRECISION (P), RECALL (R) AND F-MEASURE (F).

Gradual Sharp
Video #T TP FP FN P R F #T TP FP FN P R F

203 CNN 171 143 57 28 0.715 0.836 0.771 280 230 9 50 0.962 0.821 0.886
222 CNN 101 80 24 21 0.769 0.792 0.78 309 275 11 34 0.962 0.89 0.924
224 ABC 131 116 14 15 0.892 0.885 0.889 296 282 8 14 0.972 0.953 0.962
412 ABC 137 122 11 15 0.917 0.891 0.904 345 323 11 22 0.967 0.936 0.951
425 ABC 180 170 28 10 0.859 0.944 0.899 295 265 12 30 0.957 0.898 0.927
515 CNN 131 105 16 26 0.868 0.802 0.833 283 259 15 24 0.945 0.915 0.93
531 CNN 108 85 24 23 0.78 0.787 0.783 359 316 18 43 0.946 0.88 0.912
619 ABC 127 52 131 75 0.284 0.409 0.335 321 154 155 167 0.498 0.48 0.489

Total 1086 873 305 213 0.741 0.804 0.771 2488 2104 239 384 0.898 0.846 0.871
TABLE IX

DETAILED PER VIDEO RESULTS OF T2003. HERE, WE USE S+BT FOR TRAINING OUR MODEL. WE REPORT THE RESULTS FOR BOTH GRADUAL AND
SHARP TRANSITIONS. FOR EACH CLASS WE SHOW THE NUMBER OF TRANSITIONS (#T), TRUE POSITIVES (TP), FALSE POSITIVES (FP), FALSE

NEGATIVES (FN), PRECISION (P), RECALL (R) AND F-MEASURE (F).

Gradual Sharp
Video #T TP FP FN P R F #T TP FP FN P R F

1004 ABCa 203 166 13 37 0.927 0.818 0.869 224 213 22 11 0.906 0.951 0.928
1012 CNNa 170 136 13 34 0.913 0.8 0.853 215 194 15 21 0.928 0.902 0.915
1016 CNNa 150 119 9 31 0.93 0.793 0.856 242 214 13 28 0.943 0.884 0.913
1021 ABCa 175 154 13 21 0.922 0.88 0.901 240 230 18 10 0.927 0.958 0.943
1101 CNNa 204 172 20 32 0.896 0.843 0.869 191 187 11 4 0.944 0.979 0.961
1109 ABCa 170 151 10 19 0.938 0.888 0.912 257 246 15 11 0.943 0.957 0.95
1123 CNNa 126 93 29 33 0.762 0.738 0.75 236 214 10 22 0.955 0.907 0.93
1126 ABCa 189 168 12 21 0.933 0.889 0.911 273 261 23 12 0.919 0.956 0.937
1208 CNNa 137 112 15 25 0.882 0.818 0.848 212 196 17 16 0.92 0.925 0.922
1210 ABCa 159 140 8 19 0.946 0.881 0.912 271 252 14 19 0.947 0.93 0.939
1216 CNNa 153 119 11 34 0.915 0.778 0.841 197 187 26 10 0.878 0.949 0.912
1221 ABCa 195 149 14 46 0.914 0.764 0.832 217 197 27 20 0.879 0.908 0.893

Total 2031 1679 167 352 0.91 0.827 0.866 2031 2591 211 184 0.925 0.934 0.929
TABLE X

DETAILED PER VIDEO RESULTS OF T2004. HERE, WE USE S+R+BT FOR TRAINING OUR MODEL. WE REPORT THE RESULTS FOR BOTH GRADUAL AND
SHARP TRANSITIONS. FOR EACH CLASS WE SHOW THE NUMBER OF TRANSITIONS (#T), TRUE POSITIVES (TP), FALSE POSITIVES (FP), FALSE

NEGATIVES (FN), PRECISION (P), RECALL (R) AND F-MEASURE (F).

Gradual Sharp
Video #T TP FP FN P R F #T TP FP FN P R F

1004 ABCa 203 177 9 26 0.952 0.872 0.91 224 209 18 15 0.921 0.933 0.927
1012 CNNa 170 149 23 21 0.866 0.876 0.871 215 191 13 24 0.936 0.888 0.912
1016 CNNa 150 122 13 28 0.904 0.813 0.856 242 211 12 31 0.946 0.872 0.908
1021 ABCa 175 154 22 21 0.875 0.88 0.877 240 227 14 13 0.942 0.946 0.944
1101 CNNa 204 187 13 17 0.935 0.917 0.926 191 180 12 11 0.938 0.942 0.94
1109 ABCa 170 159 12 11 0.93 0.935 0.933 257 241 11 16 0.956 0.938 0.947
1123 CNNa 126 99 32 27 0.756 0.786 0.77 236 206 8 30 0.963 0.873 0.916
1126 ABCa 189 179 16 10 0.918 0.947 0.932 273 260 14 13 0.949 0.952 0.951
1208 CNNa 137 117 22 20 0.842 0.854 0.848 212 192 17 20 0.919 0.906 0.912
1210 ABCa 159 148 21 11 0.876 0.931 0.902 271 251 7 20 0.973 0.926 0.949
1216 CNNa 153 137 25 16 0.846 0.895 0.87 197 184 21 13 0.898 0.934 0.915
1221 ABCa 195 168 18 27 0.903 0.862 0.882 217 195 13 22 0.938 0.899 0.918

Total 2031 1796 226 235 0.888 0.884 0.886 2775 2547 160 228 0.941 0.918 0.929
TABLE XI

DETAILED PER VIDEO RESULTS OF T2004. HERE, WE USE S+BT FOR TRAINING OUR MODEL. WE REPORT THE RESULTS FOR BOTH GRADUAL AND
SHARP TRANSITIONS. FOR EACH CLASS WE SHOW THE NUMBER OF TRANSITIONS (#T), TRUE POSITIVES (TP), FALSE POSITIVES (FP), FALSE

NEGATIVES (FN), PRECISION (P), RECALL (R) AND F-MEASURE (F).
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Gradual Sharp
Video #T TP FP FN P R F #T TP FP FN P R F
LNA 198 147 11 51 0.93 0.742 0.826 45 31 26 14 0.544 0.689 0.608
NFC 77 57 11 20 0.838 0.74 0.786 121 115 8 6 0.935 0.95 0.943
NEC 94 88 3 6 0.967 0.936 0.951 74 57 5 17 0.919 0.77 0.838
HNA 124 107 4 17 0.964 0.863 0.911 24 21 8 3 0.724 0.875 0.792
3PGC 228 171 32 57 0.842 0.75 0.794 132 112 48 20 0.7 0.848 0.767
CLE 123 98 22 25 0.817 0.797 0.807 244 236 33 8 0.877 0.967 0.92
CDC 302 231 27 71 0.895 0.765 0.825 139 129 65 10 0.665 0.928 0.775
8NNE 214 184 44 30 0.807 0.86 0.833 424 418 36 6 0.921 0.986 0.952
CLE 37 28 7 9 0.8 0.757 0.778 57 54 7 3 0.885 0.947 0.915

5PGC 190 155 44 35 0.779 0.816 0.797 81 75 30 6 0.714 0.926 0.806
MNE 181 156 11 25 0.934 0.862 0.897 339 323 21 16 0.939 0.953 0.946
CLE 27 25 4 2 0.862 0.926 0.893 44 42 0 2 1 0.955 0.977

1NNE 146 134 11 12 0.924 0.918 0.921 120 118 5 2 0.959 0.983 0.971
Total 1941 1581 231 360 0.873 0.815 0.843 1844 1731 292 113 0.856 0.939 0.895

TABLE XII
DETAILED PER VIDEO RESULTS OF T2006. HERE, WE USE S+R+BT FOR TRAINING OUR MODEL. WE REPORT THE RESULTS FOR BOTH GRADUAL AND

SHARP TRANSITIONS. FOR EACH CLASS WE SHOW THE NUMBER OF TRANSITIONS (#T), TRUE POSITIVES (TP), FALSE POSITIVES (FP), FALSE
NEGATIVES (FN), PRECISION (P), RECALL (R) AND F-MEASURE (F).

Gradual Sharp
Video #T TP FP FN P R F #T TP FP FN P R F
LNA 198 150 16 48 0.904 0.758 0.824 45 39 31 6 0.557 0.867 0.678
NFC 77 56 22 21 0.718 0.727 0.723 121 115 8 6 0.935 0.95 0.943
NEC 94 81 8 13 0.91 0.862 0.885 74 46 6 28 0.885 0.622 0.73
HNA 124 113 33 11 0.774 0.911 0.837 24 22 6 2 0.786 0.917 0.846
3PGC 228 168 38 60 0.816 0.737 0.774 132 105 41 27 0.719 0.795 0.755
CLE 123 110 28 13 0.797 0.894 0.843 244 223 14 21 0.941 0.914 0.927
CDC 302 241 40 61 0.858 0.798 0.827 139 119 53 20 0.692 0.856 0.765
8NNE 214 183 53 31 0.775 0.855 0.813 424 372 28 52 0.93 0.877 0.903
CLE 37 35 7 2 0.833 0.946 0.886 57 51 3 6 0.944 0.895 0.919

5PGC 190 149 42 41 0.78 0.784 0.782 81 72 17 9 0.809 0.889 0.847
MNE 181 168 26 13 0.866 0.928 0.896 339 294 17 45 0.945 0.867 0.905
CLE 27 26 5 1 0.839 0.963 0.897 44 28 0 16 1 0.636 0.778

1NNE 146 138 21 8 0.868 0.945 0.905 120 116 3 4 0.975 0.967 0.971
Total 1941 1618 339 323 0.827 0.834 0.83 1844 1602 227 242 0.876 0.869 0.872

TABLE XIII
DETAILED PER VIDEO RESULTS OF T2006. HERE, WE USE S+BT FOR TRAINING OUR MODEL. WE REPORT THE RESULTS FOR BOTH GRADUAL AND

SHARP TRANSITIONS. FOR EACH CLASS WE SHOW THE NUMBER OF TRANSITIONS (#T), TRUE POSITIVES (TP), FALSE POSITIVES (FP), FALSE
NEGATIVES (FN), PRECISION (P), RECALL (R) AND F-MEASURE (F).

Gradual Sharp
Video #T TP FP FN P R F #T TP FP FN P R F

BG 11362 4 2 2 2 0.5 0.5 0.5 104 95 14 9 0.872 0.913 0.892
BG 14213 61 49 0 12 1 0.803 0.891 106 106 3 0 0.972 1 0.986
BG 2408 20 17 4 3 0.81 0.85 0.829 101 100 5 1 0.952 0.99 0.971
BG 34901 16 9 4 7 0.692 0.562 0.621 224 215 4 9 0.982 0.96 0.971
BG 35050 4 1 0 3 1 0.25 0.4 98 98 0 0 1 1 1
BG 35187 23 19 3 4 0.864 0.826 0.844 135 125 2 10 0.984 0.926 0.954
BG 36028 0 0 0 0 - - - 87 86 9 1 0.905 0.989 0.945
BG 36182 14 3 0 11 1 0.214 0.353 95 95 1 0 0.99 1 0.995
BG 36506 6 4 1 2 0.8 0.667 0.727 77 76 0 1 1 0.987 0.993
BG 36537 30 24 13 6 0.649 0.8 0.716 259 243 0 16 1 0.938 0.968
BG 36628 10 5 3 5 0.625 0.5 0.556 192 187 2 5 0.989 0.974 0.982
BG 37359 6 6 1 0 0.857 1 0.923 164 158 1 6 0.994 0.963 0.978
BG 37417 12 9 2 3 0.818 0.75 0.783 76 73 2 3 0.973 0.961 0.967
BG 37822 10 9 1 1 0.9 0.9 0.9 119 115 3 4 0.975 0.966 0.97
BG 37879 4 2 1 2 0.667 0.5 0.571 95 91 0 4 1 0.958 0.978
BG 38150 4 4 0 0 1 1 1 215 213 2 2 0.991 0.991 0.991
BG 9401 3 3 0 0 1 1 1 89 88 0 1 1 0.989 0.994

Total 227 166 35 61 0.826 0.731 0.776 227 2164 48 72 0.978 0.968 0.973
TABLE XIV

DETAILED PER VIDEO RESULTS OF T2007. HERE, WE USE S+R+BT FOR TRAINING OUR MODEL. WE REPORT THE RESULTS FOR BOTH GRADUAL AND
SHARP TRANSITIONS. FOR EACH CLASS WE SHOW THE NUMBER OF TRANSITIONS (#T), TRUE POSITIVES (TP), FALSE POSITIVES (FP), FALSE

NEGATIVES (FN), PRECISION (P), RECALL (R) AND F-MEASURE (F).
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Gradual Sharp
Video #T TP FP FN P R F #T TP FP FN P R F

BG 11362 4 0 2 4 0 0 - 104 81 13 23 0.862 0.779 0.818
BG 14213 61 45 2 16 0.957 0.738 0.833 106 106 3 0 0.972 1 0.986
BG 2408 20 18 5 2 0.783 0.9 0.837 101 100 7 1 0.935 0.99 0.962

BG 34901 16 8 2 8 0.8 0.5 0.615 224 219 6 5 0.973 0.978 0.976
BG 35050 4 0 1 4 0 0 - 98 98 0 0 1 1 1
BG 35187 23 19 1 4 0.95 0.826 0.884 135 125 3 10 0.977 0.926 0.951
BG 36028 0 0 0 0 - - - 87 86 14 1 0.86 0.989 0.92
BG 36182 14 3 0 11 1 0.214 0.353 95 95 3 0 0.969 1 0.984
BG 36506 6 4 2 2 0.667 0.667 0.667 77 76 1 1 0.987 0.987 0.987
BG 36537 30 24 20 6 0.545 0.8 0.649 259 244 0 15 1 0.942 0.97
BG 36628 10 6 3 4 0.667 0.6 0.632 192 191 5 1 0.974 0.995 0.985
BG 37359 6 6 1 0 0.857 1 0.923 164 157 3 7 0.981 0.957 0.969
BG 37417 12 10 2 2 0.833 0.833 0.833 76 72 4 4 0.947 0.947 0.947
BG 37822 10 9 1 1 0.9 0.9 0.9 119 115 5 4 0.958 0.966 0.962
BG 37879 4 3 1 1 0.75 0.75 0.75 95 92 0 3 1 0.968 0.984
BG 38150 4 4 2 0 0.667 1 0.8 215 214 1 1 0.995 0.995 0.995
BG 9401 3 3 1 0 0.75 1 0.857 89 89 0 0 1 1 1

Total 227 162 46 65 0.779 0.714 0.745 2236 2160 68 76 0.969 0.966 0.968
TABLE XV

DETAILED PER VIDEO RESULTS OF T2007. HERE, WE USE S+BT FOR TRAINING OUR MODEL. WE REPORT THE RESULTS FOR BOTH GRADUAL AND
SHARP TRANSITIONS. FOR EACH CLASS WE SHOW THE NUMBER OF TRANSITIONS (#T), TRUE POSITIVES (TP), FALSE POSITIVES (FP), FALSE

NEGATIVES (FN), PRECISION (P), RECALL (R) AND F-MEASURE (F).

Video #T TP FP FN P R F
V1 80 66 12 14 0.846 0.825 0.835
V2 146 123 8 23 0.939 0.842 0.888
V3 112 101 1 11 0.99 0.902 0.944
V4 60 59 2 1 0.967 0.983 0.975
V5 104 101 3 3 0.971 0.971 0.971
V6 54 51 4 3 0.927 0.944 0.936
V7 109 105 3 4 0.972 0.963 0.968
V8 196 172 5 24 0.972 0.878 0.922
V9 61 60 1 1 0.984 0.984 0.984

V10 63 59 0 4 1 0.937 0.967
Overall 985 897 39 88 0.958 0.911 0.934

TABLE XVI
Detailed per video results of the RAI dataset. Here, we use S+BT for training our model. We report the combined transition results. For each video we show

the total number of transitions (#T), true positives (TP), false positives (FP), false negatives (FN), precision (P), recall (R) and F-measure (F).

Batch size Starting Time End Time # Seconds Memory # Iterations Faster than real time by
1 19:08:23 19:11:26 183 69413912 6394 11.18076503
1 16:13:03 16:16:06 184 69413912 6394 11.12

10 21:16:31 21:18:37 125 694139048 640 16.36864
10 21:20:45 21:22:53 128 694139048 640 15.985
20 14:55:16 14:57:13 118 1388278088 320 17.33966102
20 14:59:21 15:01:19 117 1388278088 320 17.48786325
30 21:06:39 21:08:30 112 2082417128 214 18.26857143
30 21:10:44 21:12:36 112 2082417128 214 18.26857143
40 15:04:59 15:06:52 114 2776556168 160 17.94807018
40 15:09:55 15:11:56 120 2776556168 160 17.05066667
50 11:00:04 11:01:59 115 3470695208 128 17.792
50 14:50:18 14:52:11 114 3470695208 128 17.94807018
60 21:25:47 21:27:34 107 4164834248 107 19.12224299
60 16:07:51 16:09:44 113 4164834248 107 18.10690265
70 15:18:27 15:20:19 112 4858973288 92 18.26857143
70 15:22:29 15:24:20 110 4858973288 92 18.60072727
80 10:49:16 10:51:09 113 5553112328 80 18.10690265
80 10:54:25 10:56:19 114 5553112328 80 17.94807018
90 15:50:29 15:52:19 109 6247251368 72 18.77137615
90 15:55:18 15:57:08 111 6247251368 72 18.43315315
100 21:32:57 21:34:43 106 6941390408 64 19.30264151
100 21:36:45 21:38:32 106 6941390408 64 19.30264151

TABLE XVII
THE PROCESSING TIME OF OUR TECHNIQUE. WE REPORT DETAILED ANALYSIS OF DIFFERENT BATCH SIZES AS INPUT. THE BIGGER THE BATCH SIZE,
THE LESS PROCESSING TIME IS REQUIRED. THIS, HOWEVER, REQUIRES MORE GPU MEMORY. EXPERIMENTS SHOWS THAT THE PROCESSING SPEED

GAIN FROM 10 TO 100 BATCH SIZE IS NOT SIGNIFICANT. THATS BETWEEN 16-19.3 REAL-TIME SPEED UP FACTOR.
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Fig. 6. Filter responses of our technique DeepSBD stacked next to each other. The green grid shows filters’ borders. Here, y-axis is time (see blue arrow)
and x-axis is space (see yellow arrow). Sharp transitions have an abrupt response in time (bright horizontal lines). Gradual transitions have blurred responses
in time. No transition do not show specific patterns.


