ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) 2016
Kiana Calagari, Tarek Elgamal, Khaled Diab, Krzysztof Templin, Piotr Didyk, Wojciech Matusik, Mohamed Hefeeda
Current three-dimensional displays cannot fully reproduce all depth cues used by a human observer in the real world. Instead, they create only an illusion of looking at a three-dimensional scene. This leads to a number of challenges during the content creation process. To assure correct depth reproduction and visual comfort, either the acquisition setup has to be carefully controlled or additional postprocessing techniques have to be applied. Furthermore, these manipulations need to account for a particular setup that is used to present the content, for example, viewing distance or screen size. This creates additional challenges in the context of personal use when stereoscopic content is shown on TV sets, desktop monitors, or mobile devices. We address this problem by presenting a new system for streaming stereoscopic content. Its key feature is a computationally efficient depth adjustment technique which can automatically optimize viewing experience for videos of field sports such as soccer, football, and tennis. Additionally, the method enables depth personalization to allow users to adjust the amount of depth according to their preferences. Our stereoscopic video streaming system was implemented, deployed, and tested with real users.